<em>Answer:</em>
<em>Ello mate ! the answer is super simple it's option "A" Fe</em>
<em>Explanation:</em>
<em>Iron is a chemical element with symbol</em><em> "Fe"</em><em> and atomic number 26. It is a type of metal, that belongs to the first transition series and group 8 of the periodic table. It is by mass the most common element on Earth, forming much of Earth's outer and inner core.</em>
Answer:
The electrochemical synthesis of ammonia from nitrogen under mild conditions using renewable electricity is an attractive alternative to the energy-intensive Haber–Bosch process, which dominates industrial ammonia production.
Explanation:
However, there are considerable scientific and technical challenges facing the electrochemical alternative, and most experimental studies reported so far have achieved only low selectivities and conversions. The amount of ammonia produced is usually so small that it cannot be firmly attributed to electrochemical nitrogen fixation rather than contamination from ammonia that is either present in air, human breath or ion-conducting membranes, or generated from labile nitrogen-containing compounds (for example, nitrates, amines, nitrites and nitrogen oxides) that are typically present in the nitrogen gas stream, in the atmosphere or even in the catalyst itself. Although these sources of experimental artefacts are beginning to be recognized and managed, concerted efforts to develop effective electrochemical nitrogen reduction processes would benefit from benchmarking protocols for the reaction and from a standardized set of control experiments designed to identify and then eliminate or quantify the sources of contamination.
To determine the equilibrium concentration of hydronium ions in the solution, we use the given value of the percent ionized. Percent ionized is the percent of the ions that is dissociated into the solution. It is equal to the concentration of an ionized species over the initial concentration of the compound multiplied by 100 percent. For this case, the dissociation of the weak acid has a 1 is to 1 ratio to the ionized species such that the concentration of the CH3COO- and H+ ions at equilibrium would be equal. We calculate as follows:
5.2% = 5.2 M H3O+ / 100 M CH3COOH
5.2 M H3O+ / 100 M CH3COOH = [H3O+] / 0.048 M CH3COOH
[H3O+] = 0.2496 M
Answer:
The half-life of Material 1 and Material 2 are equal.
Explanation:
Material 1 disintegrates to half its mass three times in 21.6 s, to go from 100g
to 12.5g. That is,
100g - 50g - 25g - 12.5g
Material 2 disintegrates to half its mass three times in 21.6 s, to go from 200g to 25g. That is,
200g - 50g - 25g - 12.5g.
This means that regardless of their initial masses involved, material 1 and material 2 have equal half-life.
Their half-life is 21.6 ÷ 3 = 7.2 sec
Answer:
pH = 11
Explanation:
The concentration of OH⁻ in <em>pure water</em> is 10⁻⁷ M. If a substance increases OH⁻ concentration by 10⁴, the new concentration will be:
[OH⁻] = 10⁴ x 10⁻⁷ M = 10⁻³M
We can calculate pOH using it's definition:
pOH = -log[OH⁻] = -log (10⁻³) = 3
Then, we can find out pH using the following relation:
pH + pOH = 14
pH = 14 - pOH = 14 -3 = 11
Since pH = 11 is higher than 7, we can confirm that the substance is a base.