The correct answer is A.
Hunger, chemical imbalance, and blood levels are all internal issues. Cat dander on the other hand is not something the body creates or and is something in the environment.
Thus, your answer is A.
Data:
m (<span>Sample Mass) = ?
n (</span><span>Number of moles) = 0.714 mol
MM (Molar Mass) of </span>Mercury (I) Chloride (

)
Hg = 2*200.59 = 401.18 amu
Cl = 2*35.453 = 70.906 amu
----------------------------------------
Molar Mass

= 401.18 + 70.906 = 472.086 ≈ 472.09<span> amu or 472.09 g/mol
</span>
Formula:

Solving:



Answer:
By approximation would be letter
D) <span>
337.2 g</span>
Answer:
Water outside the cell will flow inwards by osmosis to attain equilibrium
Explanation:
In the hypotonic environment, the concentration of water is greater outside the cell and the concentration of solute is higher inside. A solution outside of a cell has a lower concentration of solutes relative to the cytosol.
If concentrations of dissolved solutes are greater inside the cell, the concentration of water inside the cell is correspondingly lower. As a result, water outside the cell will flow inwards by osmosis to attain equilibrium.
Osmosis is a process by which molecules of a solvent tend to pass from a less concentrated solution into a more concentrated one through a semipermeable membrane.
What exactly are you asking
Explanation:
mass H2O2 = 55 mL(1.407 g/mL) = 80.85 g
molar mass H2O2 = 2(1.01 g/mol) + 2(16.00 g/mol) = 34.02 g/mol
moles H2O2 = 80.85 g/34.02 g/mol = 2.377 moles H2O2
For each mole of H2O2 you obtain 0.5 mole of O2 (see the equation).
moles O2 = 2.377 moles H2O2 (1 mole O2)/(2 moles H2O2) = 1.188 moles O2
Now, you need the temperature. If you are at STP (273 K, and 1.00 atm) then 1 mole of an ideal gas at STP has a volume of 22.4 L. Without temperature you are not really able to continue. I will assume you are at STP.
Volume O2 = 1.188 moles O2(22.4 L/mole) = 0.0530 L of O2.
which is 53 mL.