Answer:
The product of aerobic respiration is Carbon dioxide.
Explanation:
- The process of breaking down glucose to produce energy and waste products is called respiration. Livings beings need respiration process to generate energy so that they can survive.
- The types of respiration are : Anaerobic and aerobic respiration.
- Aerobic respiration takes place in presence of oxygen and produces large amount of energy.
- The final product of aerobic respiration are carbon dioxide, water and 38 ATP of energy.
Since there are 63.01284 grams to one mole of HNO3, then 12.5 moles would be in 450 grams of it.
Answer:
May i ask what is the question?
Explanation:
Answer:
8.934 g
Step-by-step explanation:
We know we will need a balanced equation with masses and molar masses, so let’s gather all the information in one place.
M_r: 192.12 44.01
H₃C₆H₅O₇ + 3NaHCO₃ ⟶ Na₃C₆H₅O₇ + 3H₂O + 3CO₂
m/g: 13.00
For ease of writing, let's write H₃C₆H₅O₇ as H₃Cit.
(a) Calculate the <em>moles of H₃Cit
</em>
n = 13.00 g × (1 mol H₃Cit /192.12 g H₃Cit)
n = 0.067 67 mol H₃Cit
(b) Calculate the <em>moles of CO₂
</em>
The molar ratio is (3 mol CO₂/1 mol H₃Cit)
n = 0.067 67 mol H₃Cit × (3 mol CO₂/1 mol H₃Cit)
n = 0.2030 mol CO₂
(c) Calculate the <em>mass of CO₂
</em>
m = 0.2030 mol CO₂ × (44.01 g CO₂/1 mol CO₂)
m = 8.934 g CO₂
The percent yield of the reaction between ammonia gas with oxygen gas is 90.52%.
A chemical reaction between ammonia gas (NH3) with oxygen gas (O2)
NH₃ + O₂ → NO₂ + H₂O
The balanced reaction 4NH₃ + 7O₂ → 4NO₂ + 6H₂O
Calculate the number of moles from the reactant
- Ammonia gas
Molar mass N = 14 gr/mol
Molar mass H = 1 gr/mol
Molar mass NH₃ = 14 + (3 × 1) = 14 + 3 = 17 gr/mol
mass = 28.5 grams
n = m ÷ molar mass = 28.5 ÷ 17 = 1.68 mol - Oxygen gas
Molar mass O = 16 gr/mol
Molar mass O₂ = 16 × 2 = 32 gr/mol
mass = 83.4 grams
n = m ÷ molar mass = 83.4 ÷ 32 = 2.61 mol - n O₂ ÷ coefficient O₂ = 2.61 ÷ 7 = 0.37
n NH₃ ÷ coefficient NH₃ = 1.68 ÷ 4 = 0.42
0.42 > 0.37 it means that the ammonia gas is in excess and the O₂ is limiting.
According to stoichiometry, the number of moles NO₂ with the number of moles O₂ has the ratio with the coefficient in reaction.
- Theoretically the number moles of NO₂
n O₂ : n NO₂ = 7 : 4
2.61 : n NO₂ = 7 : 4
n NO₂ = 4 x 2.61 : 7 = 1.49 mol - The actual number of moles NO₂
Molar mas NO₂ = 14 + (16 × 2) = 14 + 32 = 46 gr/mol
n NO₂ = m ÷ molar mass = 61.9 ÷ 46 = 1.35 mol
The percent yield NO₂ is the ratio of the actual number of moles NO₂ with the theoretical number of moles NO₂ times 100%.
P = (1.35 ÷ 1.49) × 100%
P = 0.9052 × 100%
P = 90.52%
Learn more about stoichiometry here: brainly.com/question/13691565
#SPJ4