Answer:
Explanation:
When the apple is held submerged in water , it experiences a buoyant force due to which it floats in water . One has to apply downward force to keep it submerged. The lower the buoyant force , lower the force needed to submerge it in water.
When apple is held at much deeper point , it experience greater pressure due to column of water around it . So its size or its volume decreases . But its weight remains the same . Due to less volume , buoyant force also decreases ( buoyant force is equal to weight of displaced volume of water. )
Due to buoyant force becoming less , force needed on apple in downward direction will also be less.
To solve this problem we will apply the concepts related to energy conservation. From this conservation we will find the magnitude of the amplitude. Later for the second part, we will need to find the period, from which it will be possible to obtain the speed of the body.
A) Conservation of Energy,


Here,
m = Mass
v = Velocity
k = Spring constant
A = Amplitude
Rearranging to find the Amplitude we have,

Replacing,


(B) For this part we will begin by applying the concept of Period, this in order to find the speed defined in the mass-spring systems.
The Period is defined as

Replacing,


Now the velocity is described as,


We have all the values, then replacing,


Mitochondria breaks down sugar to release energy to the cell.
Answer:
<h2>42.32 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 4.6 × 9.2
We have the final answer as
<h3>42.32 N</h3>
Hope this helps you