1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AlexFokin [52]
3 years ago
12

What is another way to describe the vector below?

Physics
1 answer:
yuradex [85]3 years ago
4 0

The correct choice is A .

(negative up) is the same direction as (positive down) .

You might be interested in
When the Moon orbits Earth, what is the centripetal force?
nata0808 [166]

Answer:

Gravity is the centripetal force when the moon orbits the earth.

5 0
2 years ago
A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a un
Kamila [148]

Answer:

<em>a) 6738.27 J</em>

<em>b) 61.908 J</em>

<em>c)  </em>\frac{4492.18}{v_{car} ^{2} }

<em></em>

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

I = \frac{1}{2}mr^{2}

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

I =  \frac{1}{2}*11*1.1^{2} = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = Iw^{2} = 6.655 x 31.82^{2} = <em>6738.27 J</em>

<em></em>

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

I = \frac{1}{2}mr^{2} =  \frac{1}{2}*16*2.8^{2} = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = Iw = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

(I_{1} +I_{2} )w

where the subscripts 1 and 2 indicates the values first and second  flywheels

(I_{1} +I_{2} )w = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = Iw^{2} = 6.655 x 3.05^{2} = <em>61.908 J</em>

<em></em>

<em></em>

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = \frac{1}{2}mv_{car} ^{2}

where m is the mass of the car

v_{car} is the velocity of the car

Equating the energy

2246.09 =  \frac{1}{2}mv_{car} ^{2}

making m the subject of the formula

mass of the car m = \frac{4492.18}{v_{car} ^{2} }

3 0
3 years ago
An 89 kg man drops from rest on a diving board −3.1 m above the surface of the water and comes to rest 0.5 s after reaching the
OLga [1]

To solve this problem we will use the linear motion kinematic equations, for which the change of speed squared with the acceleration and the change of position. The acceleration in this case will be the same given by gravity, so our values would be given as,

m= 89 kg\\x = 3.1 m\\t = 0.5s\\a = g = 9.8m/s^2

Through the aforementioned formula we will have to

v_f^2-v_i^2 = 2ax

The particulate part of the rest, so the final speed would be

v_f^2 = 2gx

v_f=\sqrt{2(9.8)(3.1)}

v_f = 7.79m/s

Now from Newton's second law we know that

F = ma

Here,

m = mass

a = acceleration, which can also be written as a function of velocity and time, then

F = m\frac{dv}{dt}

Replacing we have that,

F = (89)\frac{7.79}{0.5}

F = 1386.62N

Therefore the force that the water exert on the man is 1386.62

3 0
3 years ago
Please help i'm going to throw up from stress
Eddi Din [679]

Answer:

Explanation:

First of all, I used the specific heat of water as 4182 J/(kgC) and the specific heat of ethyl alcohol (EtOH) as 2440 J/(kgC); that means that we need the masses in kg, not g.

120.g = .1200 kg of ethyl alcohol. Now for the formula:

t_f=\frac{(m_{H2O}*spheat_{H2O}*temp_{H2O})+(m_{EtOH}*spheat_{EtOH}*temp_{EtOH})}{(m_{H2O}*spheat_{H2O})+(m_{EtOH}*spheat_{EtOH})} where spheat is specific heat.

Filling that horrifying-looking formula in with some values:

16.0=\frac{(x*4182*20.0)+(.1200*2440*10.0)}{(x*4182)+(.1200*2440)} and

16.0=\frac{83640x+2928}{4182x+292.8} and

16(4182x + 292.8) = 83640x + 2928 and

66912x + 4684.8 = 83640x + 2928 and

1756.8 = 16728x so

x = .105 kg and the amount of water added is 105 g

4 0
3 years ago
Winds that blow from the north and south poles
Gennadij [26K]
Winds that blow from the north and south poles would be called k<span>atabatic winds. I'm not sure if I spelled that right, but that's the answer I hope.</span>
8 0
3 years ago
Other questions:
  • Plz help me I will mark brainlieat Ques. Write down name and molecular formula of a
    10·1 answer
  • 10 POINTS ANSWER FAST!
    7·2 answers
  • Suppose your vehicle is moving 12m/s as it crosses the 7m line. It took 6 seconds to get to the 7m line. What was its accelerati
    11·1 answer
  • Plz help me on science about cells
    7·1 answer
  • Help me plzzzzzz! Can someone help me with number 4 Idon’t get it
    7·2 answers
  • You have been hired to design a spring-launched roller coaster that will carry two passengers per car. The car goes up a 13-m-hi
    9·1 answer
  • A car with a velocity of 15 m/s is accelerated uniformly at the rate of 1.9 m/s2 for 6.8 s. What is its final velocity?
    8·1 answer
  • 1 What happens to the direction of the force on a current-carrying wire if the
    13·1 answer
  • (AKS 3al) Which graph best represents a moving object in a state of equilibrium
    9·1 answer
  • A shop-vac is capable of pulling in air at a rate of 210 ft^3/min. what is the rate of the vacuum's air flow in l/s?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!