Friction can be bad by being too strong or too weak.
<span>Sometimes, when it is too strong, it decreases efficiency since some energy is wasted and turns to heat. Friction can also d</span><span>amage equipment/objects like when you slide it on the floor.
</span>
When friction is too weak, like for instance when there is black ice- our center of gravity is displaced too quickly and we can fall. Likewise, if there is a lot of slush on the ground, cars can slip and slide.
Answer:
the atomic mass is 11
Explanation:
the atomic mass is basically how many protons and neutrons there are so for this all you have to do is some simple math:
5 + 6 = 11
and boom, ur atomic mass is equal to 11!
Answer:
1.24 C
Explanation:
We know that the magnitude of the induced emf, ε = -ΔΦ/Δt where Φ = magnetic flux and t = time. Now ΔΦ = Δ(AB) = AΔB where A = area of coil and change in magnetic flux = Now ΔB = 0 - 0.750 T = -0.750 T, since the magnetic field changes from 0.750 T to 0 T.
The are , A of the circular loop is πD²/4 where D = diameter of circular loop = 16.7 cm = 16.7 × 10⁻²m
So, ε = -ΔΦ/Δt = -AΔB/Δt= -πD²/4 × -0.750 T/Δt = 0.750πD²/4Δt.
Also, the induced emf ε = iR where i = current in the coil and R = resistance of wire = ρl/A where ρ = resistivity of copper wire =1.68 × 10⁻⁸ Ωm, l = length of wire = πD and A = cross-sectional area of wire = πd²/4 where d = diameter of wire = 2.25 mm = 2.25 × 10⁻³ m.
So, ε = iR = iρl/A = iρπD/πd²/4 = 4iρD/d²
So, 4iρD/d² = 0.750πD²/4Δt.
iΔt = 0.750πD²/4 ÷ 4iρD/d²
iΔt = 0.750πD²d²/16ρ.
So the charge Q = iΔt
= 0.750π(Dd)²/16ρ
= 0.750π(16.7 × 10⁻²m 2.25 × 10⁻³ m)²/16(1.68 × 10⁻⁸ Ωm)
= 123.76 × 10⁻² C
= 1.2376 C
≅ 1.24 C
1) Equivalent resistance, 1/R = 1/15 + 1/40 + 1/60 = 8+3+2 /120 = 13/120
R = 120/13 = 9.23
2) Current, I = V/R = 115/9.23 = 12.45 A
When speed is combined with strength it is power