Answer:
Number of turns per unit length will be 
Explanation:
We have given that strength of the magnetic field produced by the solenoid B = 7 T
Current in the solenoid i = 200 A
Let the number of turns per unit length is n
Magnetic field due to solenoid is given as
here
is permeability of free space n is number of turns per unit length and i is current
So 

To solve this problem, let us recall that the formula for
gases assuming ideal behaviour is given as:
rms = sqrt (3 R T / M)
where
R = gas constant = 8.314 Pa m^3 / mol K
T = temperature
M = molar mass
Now we get the ratios of rms of Argon (1) to hydrogen (2):
rms1 / rms2 = sqrt (3 R T1 / M1) / sqrt (3 R T2 / M2)
or
rms1 / rms2 = sqrt ((T1 / M1) / (T2 / M2))
rms1 / rms2 = sqrt (T1 M2 / T2 M1)
Since T1 = 4 T2
rms1 / rms2 = sqrt (4 T2 M2 / T2 M1)
rms1 / rms2 = sqrt (4 M2 / M1)
and M2 = 2 while M1 = 40
rms1 / rms2 = sqrt (4 * 2 / 40)
rms1 / rms2 = 0.447
Therefore the ratio of rms is:
<span>rms_Argon / rms_Hydrogen = 0.45</span>
Answer:
D &B
Explanation:
Using Fleming right hand rule that States that if the fore-finger, middle finger and the thumb of left hand are stretched mutually perpendicular to each other, such that fore-finger points in the direction of magnetic field, the middle finger points in the direction of the motion of positive charge, then the thumb points to the direction of the force
The molecules of a solid vibrate faster so that they start spreading out to become a liquid. This energy makes them vibrate faster so the bonds between molecules can't interact all that well anymore creating more distance. The stronger the bonds between the molecules the higher the energy (temperature) has to be to get them away from each other. Hope I didn't confuse you too much!