Answer:
2 m = E / c^2 where m is mass of electron
E = h v where v is the frequency ( nu) of the incident photon
E = h c / y where y is the incident wavelength (lambda)
2 m = h / (c y)
y = h / (2 m c) wavelength required
y = 6.62 * 10E-34 / (2 * 9.1 * 10E-31 * 3 * 10E8) m
y = 3.31 / 27.3 E-11 m
y = 1.21 E -12 m = .0121 Angstrom units
The answer is constant acceleration.
Answer:
The compression in the spring is 5.88 meters.
Explanation:
Given that,
Mass of the car, m = 39000 kg
Height of the car, h = 19 m
Spring constant of the spring, 
We need to find the compression in the spring in stopping the ore car. It can be done by balancing loss in gravitational potential energy and the increase in elastic energy. So,

x is the compression in spring

So, the compression in the spring is 5.88 meters.
Answer:
It is simply molecular nitrogen (N2). Nitrogen, in its molecular form, consists of two nitrogen atoms bound together with a tripple bond
Explanation:
Answer:
The vehicle with the most mass
Explanation:
Momentum is the quantity of motion in a body and it is dependent on its mass and velocity.
Momentum = m x v
m is the mass
v is the velocity
Now,
Both mass and velocity are directly proportional to momentum. Since the two bodies moves with the same velocity, the vehicle with the most mass will have the greatest momentum