Answer:
a. The horizontal component of acceleration a₁ = 0.68 m/s²
The vertical component of acceleration a₂ = -0.11 m/s²
b. -9.19° = 350.81° from the the positive x-axis
Explanation:
The initial velocity v₁ of the fish is v₁ = 4.00i + 1.00j m/s. Its final velocity after accelerating for t = 19.0 s is v₂ = 17.0i - 1.00j m/s
a. The acceleration a = (v₂ - v₁)/t = [17.0i - 1.00j - (4.00i + 1.00j)]/19 = [(17.0 -4.0)i - (-1.0 -1.0)j]/19 = (13.0i - 2.0j)/19 = 0.68i - 0.11j m/s²
The horizontal component of acceleration a₁ = 0.68 m/s²
The vertical component of acceleration a₂ = -0.11 m/s²
b. The direction of the acceleration relative to the unit vector i,
tanθ = a₂/a₁ = -0.11/0.68 = -0.1618
θ = tan⁻¹(-0.1618) = -9.19° ⇒ 360 + (-9.19) = 350.81° from the the positive x-axis
<span>It's another energy balance equation, though: energy to start with is the same as energy that you end with. Suppose that we start a distance r0 from the Earth and end a distance r1 from the Moon, then the energy balance gives:
1 v02 - G M / r0 - G m / (D - r0) = 1 v12 - G M / (D - r1) - G m / r1
...where m is the moon's mass.
One simple limit takes D ? ? and 1 v02 ? G M / r0 (the escape velocity equation), to yield:
1 v12 ? G M / r1
v1 ? ?( 2 G M / r1 ) = 2377 m/s.</span>
Answer:
rest and motion are the relative terms because they depend on the observer's frame of reference. So if two different observers are not at rest with respect to each other, then they too get different results when they observe the motion or rest of a body
Explanation:
Because there is no wind, rain, snow, sleet, or people to wear them down,
and no rivers, streams, or floods to cover them over.