the big number describes the number ratio in a chemical equation
so for example,
2H2 + O2 --> 2H2O means
2 moles of hydrogen reacts with one mole of oxygen to form 2 moles of water
and as you know, the small (subscript) number determines the number of atoms of that element in one molecule of a compound
so I believe that drawing a normal lewis structure ( O=O ) should be correct
Periodic Trend:
The Atomic radius of atoms generally decreases from left to right across a period
Group Trend:
The atomic radius of atoms generally increases from top to bottom within a group. As atomic number increases down a group, there is a increase in the positive nuclear charge, however the co-occurring increase in the number of orbitals wins out, increasing the atomic radius down a group in the periodic table
Answer :
The Atom with the greatest atomic radius is chlorine. Fluorine can be ruled out because it is in the same period as oxygen and further to the right down the period. Chlorine has the largest atomic size because it is farthest down the group of any of the above elements listed.
Answer:
The Punnett square is a square diagram that is used to predict the genotypes of a particular cross or breeding experiment. ... The diagram is used by biologists to determine the probability of an offspring having a particular genotype.
Explanation:
in biology it predicts the possible offspring provided the features of the mother or father
1. H₂SO₄ + 2NH₄OH ⟶ (NH₄)₂SO₄ + 2H₂O
2. 2NaOH + H₂CO₃ ⟶ Na₂CO₃ + 2H₂O
3. HNO₃ + KOH ⟶ KNO₃ + H₂O
<em>Explanation</em>:
Acid + base ⟶ salt + water
Take the H from the acid and the OH from the base to get water.
Then, join what’s left to get the salt. Write the symbol for the metal first.
For example, in equation 3, take the H from HNO₃ and the OH from KOH.
Combining the remaining parts (NO₃ and K) to get the salt, KNO₃.
Branched chain alkanes
The alkanes don't contain a functional group and so the branches are numbered from the end that gives the lowest set of position numbers for the branches.
Use the above rules to see how the names of the alkanes below are built up.
The structure of 2-methylbutane is a butane molecule (C4H10) but with a methyl group (CH3) replacing a hydrogen on the second carbon atom in the chain. The structure of 3-methylpentane could be drawn as butane with an ethyl group (C2H5) replacing a hydrogen on the second carbon. Note that this is not 2-ethylbutane. The structure of 2,2-dimethylbutane is butane with two methyl groups replacing the two hydrogens on the second carbon.