The wave length becomes shorter and the pitch becomes higher
A net torque of magnitude is 600
<span>Answer:
Therefore, x component: Tcos(24°) - f = 0 y component: N + Tsin(24°) - mg = 0 The two equations I get from this are: f = Tcos(24°) N = mg - Tsin(24°) In order for the crate to move, the friction force has to be greater than the normal force multiplied by the static coefficient, so... Tcos(24°) = 0.47 * (mg - Tsin(24°)) From all that I can get the equation I need for the tension, which, after some algebraic manipulation, yields: T = (mg * static coefficient) / (cos(24°) + sin(24°) * static coefficient) Then plugging in the values... T = 283.52.
Reference https://www.physicsforums.com/threads/difficulty-with-force-problems-involving-friction.111768/</span>
So, the work was done by that hot air-balloon is <u>30,000 J or 30 kJ</u>.
<h3>Introduction</h3>
Hi ! In this question, I will help you. <u>Work is the amount of force exerted to cause an object to move a certain distance from its starting point</u>. In physics, the amount of work will be proportional to the increase in force and increase in displacement. Amount of work can be calculated by this equation :

With the following condition :
- W = work (J)
- F = force (N)
- s = shift or displacement (m)
Now, the s (displacement) can be written as ∆h (altitude change) because the object move to vertical line. The formula can also be changed to:

With the following condition :
- W = work (J)
- F = force (N)
= change of altitude (m)
If an object has mass, then the object will also be affected by gravity. Always remember that F = m × g. So that :


With the following condition :
- W = work (J)
- m = mass of the object (kg)
- g = acceleration of the gravity (m/s²)
= change of altitude (m)
<h3>Problem Solving</h3>
We know that :
- F = force = 100 N
= change of altitude 300 m
What was asked :
Step by step :



<h3>Conclusion</h3>
So, the work was done by that hot air-balloon is 30,000 J or 30 kJ.
<h3>See More :</h3>