At the ground the ball will always have velocity along the direction of gravity. If upward motion is taken positive it will always have negative velocity at the ground because, if the ball was given an initial upward velocity then gravity will decelerate it and bring it down with a negative final velocity. If the ball is given an initial downward velocity then the ball will be further accelerated by gravity in the downward direction only, again maintaining negative direction. The magnitude however in both cases will be different. the final velocity at the ground will have higher magnitude in case of elevator moving downwards.
0.29 m/s (wave velocity = wavelength (lamda)/period (T) in metres)
35 / 1.2 = 29.16
29.16 ÷ 100 = 0.29
Wave velocity in string:
The properties of the medium affect the wave's velocity in a string. For instance, if a thin guitar string is vibrated while a thick rope is not, the guitar string's waves will move more quickly. As a result, the linear densities of the two strings affect the string's velocity. Linear density is defined as the mass per unit length.
Instead of the sinusoidal wave, a single symmetrical pulse is taken into consideration in order to comprehend how the linear mass density and tension will affect the wave's speed on the string.
Learn more about density here:
brainly.com/question/15164682
#SPJ4
Answer:
The current across the resistance is 0.011 A.
Explanation:
Total resistance, R = 25 ohms
Total current, I = 100 mA = 0.1 A
Let the voltage is V.
By the Ohm's law
V = I R
V = 0.1 x 25 = 2.5 V
Now the resistance is R' = 220 ohm
As they are in parallel so the voltage is same. Let the current is I'.
V = I' x R'
2.5 = I' x 220
I' = 0.011 A
Answer:
(a) 
(b) 
Explanation:
<u>Given:</u>
= The first temperature of air inside the tire = 
= The second temperature of air inside the tire = 
= The third temperature of air inside the tire = 
= The first volume of air inside the tire
= The second volume of air inside the tire = 
= The third volume of air inside the tire = 
= The first pressure of air inside the tire = 
<u>Assume:</u>
= The second pressure of air inside the tire
= The third pressure of air inside the tire- n = number of moles of air
Since the amount pof air inside the tire remains the same, this means the number of moles of air in the tire will remain constant.
Using ideal gas equation, we have

Part (a):
Using the above equation for this part of compression in the air, we have

Hence, the pressure in the tire after the compression is
.
Part (b):
Again using the equation for this part for the air, we have

Hence, the pressure in the tire after the car i driven at high speed is
.