Answer:
Explanation:
First, we find the mass of the air originally in the tank.
Density is given as mass divided by volume. It is given as:

Therefore, mass is:

Density of air =
; Volume of the tank = 

The mass of the air initially in the tank is 7 kg.
After air is allowed to enter, the mass changes.
New density = 
The new mass will be:

We can now find the mass of air that has entered the tank:
Mass of air that entered tank = New mass of air - Original mass of air
M = 22.75 - 7.0 = 15.75 kg
The mass of air that entered the tank is 15.75 kg.
Why did you put this on here when you know the answer lol
Answer:
The corresponding absolute pressure of the boiler is 24.696 pounds per square inch.
Explanation:
From Fluid Mechanics, we remember that absolute pressure (
), measured in pounds per square inch, is the sum of the atmospheric pressure and the working pressure (gauge pressure). That is:
(1)
Where:
- Atmospheric pressure, measured in pounds per square inch.
- Working pressured of the boiler (gauge pressure), measured in pounds per square inch.
If we suppose that
and
, then the absolute pressure is:


The corresponding absolute pressure of the boiler is 24.696 pounds per square inch.
Answer:
elongation of the brass rod is 0.01956 mm
Explanation:
given data
length = 5 cm = 50 mm
diameter = 4.50 mm
Young's modulus = 98.0 GPa
load = 610 N
to find out
what will be the elongation of the brass rod in mm
solution
we know here change in length formula that is express as
δ =
................1
here δ is change in length and P is applied load and A id cross section area and E is Young's modulus and L is length
so all value in equation 1
δ =
δ =
δ = 0.01956 mm
so elongation of the brass rod is 0.01956 mm