Answer:
they are used for electrical currents so that they can flow along the appropriate wires in the circuit
Explanation:
The current IDS is greater than 0 since the VGS has induced an inversion layer and the transistor is operating in the saturation region.
<u>Explanation:</u>
- Since > because > Vt.
- By the saturation region the MOSFET is operating.
- A specific source voltage and gate of NMOS, the voltage get drained during the specific level, the drain voltage is rises beyond where there is no effect of current during saturated region.
- MOSFET is a transistor which is a device of semiconductor vastly used for the electronic amplifying signals and switching in the devices of electronics.
- The core of this is integrated circuit.
- It is fabricated and designed in an individual chips due to tiny sizes.
Answer:
In refrigeration cycle heat transfer from inside refrigeration
In heat pump cycle heat transfer from environment
Explanation:
heat cycle is mechanical process use for cool the temperature but
In refrigeration heat transfer from inside of refrigeration that decrease temperature of refrigerator and in heat pump it decrease temperature negligible as compare to refrigerator
Answer:
The constant here is the study outline
Explanation:
In scientific research, the constant variable is that part/variable of the experiment that does not change or is set not to change. Examples include temperature, environment or height.
Assuming the scenery described in this question is an experiment. All the groups presented are bound by a constant during the experiment. The constant here is the study outline. The study outline provided to the students is not going to change.
NOTE: There could be confusion as regards the answer being the final exam grade but that will be the dependent variable as that will be the outcome of the experiment while the time spent to study will be the independent variable.
Answer:
Explanation:
a) On the verge of tipping over, reaction acts at the corner A
When slippage occurs,
Block moves w/ const. velocity equilibrium
Three-force member: reaction at A must pass through B
tan b/2h, h b/ 2 θ µ = = ∴= k k ( µ )
b) When slippage occurs,
Block moves w/ const. velocity equilibrium
Three-force member: reaction at C must pass through G
k tanθ µ =
tan x/ H/2 , x H/2