In general, if a reaction is spontaneous, the reactants possess more free energy than the products.
<u>TRUE </u>
FALSE
Answer:
molar mass = 180.833 g/mol
Explanation:
- mass sln = mass solute + mass solvent
∴ solute: unknown molecular (nonelectrolyte)
∴ solvent: water
∴ mass solute = 17.5 g
∴ mass solvent = 100.0 g = 0.1 Kg
⇒ mass sln = 117.5 g
freezing point:
∴ ΔTc = -1.8 °C
∴ Kc H2O = 1.86 °C.Kg/mol
∴ m: molality (mol solute/Kg solvent)
⇒ m = ( - 1.8 °C)/( - 1.86 °C.Kg/mol)
⇒ m = 0.9677 mol solute/Kg solvent
- molar mass (Mw) [=] g/mol
∴ mol solute = ( m )×(Kg solvent)
⇒ mol solute = ( 0.9677 mol/Kg) × ( 0.100 Kg H2O )
⇒ mol solute = 0.09677 mol
⇒ Mw solute = ( 17.5 g ) / ( 0.09677 mol )
⇒ Mw solute = 180.833 g/mol
Answer:4
Explanation:
If we carefully observe the electronegativity of the elements in question
P-2.19
N-3.04
C-2.55
Si-1.9
H-2.2
SiH4 is definitely more polar than CH4 hence greater dipole forces of a higher boiling point. NH3 is more polar than PH3 hence NH3 has greater dipole forces and a higher boiling point. Electronegative differences influences the polarity of a bond. The greater the electro negativity difference between bonding atoms, the greater the dipole forces and the greater the boiling point.
Answer:
sulfur
Explanation:
In oxygen family sulfur has yellow color and also having stinky smell. Thus given statements are about sulfur.
It is present in oxygen family.
It has six valance electrons.
Its atomic number is 16.
Its atomic weight is 32 amu.
The electronic configuration of sulfur is given below,
S₁₆ = 1s² 2s² 2p⁶ 3s² 3p⁴
We can see the valance shell is third shell and it have six electrons thus sulfur have six valance electrons. (3s² 3p⁴ )
Sulfur is used in vulcanisation process.
It is used in bleach and also as a preservative for many food.
it is used to making gun powder.
Answer:
a) The concentration of drug in the bottle is 9.8 mg/ml
b) 0.15 ml drug solution + 1.85 ml saline.
c) 4.9 × 10⁻⁵ mol/l
Explanation:
Hi there!
a) The concentration of the drug in the bottle is 294 mg/ 30.0 ml = 9.8 mg/ml
b) The drug has to be administrated at a dose of 0.0210 mg/ kg body mass. Then, the total mass of drug that there should be in the injection for a person of 70 kg will be:
0.0210 mg/kg-body mass * 70 kg = 1.47 mg drug.
The volume of solution that contains that mass of drug can be calculated using the value of the concentration calculated in a)
If 9.8 mg of the drug is contained in 1 ml of solution, then 1.47 mg drug will be present in (1.47 mg * 1 ml/ 9.8 mg) 0.15 ml.
To prepare the injection, you should take 0.15 ml of the concentrated drug solution and (2.0 ml - 0.15 ml) 1.85 ml saline
c) In the injection there is a concentration of (1.47 mg / 2.0 ml) 0.735 mg/ml.
Let´s convert it to molarity:
0.735 mg/ml * 1000 ml/l * 0.001 g/mg* 1 mol/ 15000 g = 4.9 × 10⁻⁵ mol/l