1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Roman55 [17]
3 years ago
6

A passenger on your boat falls overboard. what should you do first?

Physics
1 answer:
yarga [219]3 years ago
5 0
The very first thing that you should do when a passenger on your boat falls overboard is to throw a PFD or also known as a Personal Flotation Device. This would include anything that can help the passenger to float. But this step would differ, only if the passenger is not wearing a lifevest. 
You might be interested in
A ball collides with a vertical, unmovable wall. There is no friction between the wall and the ball (the only force acting on th
user100 [1]

Answer: the same direction I.e to the left.

Explanation:

The component perpendicular to the contact surface is such that will stop the relative motion and, in case of elastic collision like here, return the system to the same kinetic energy. So ball hitting immovable surface will have the same speed (magnitude of velocity) as before the collision.

There will also be parallel force caused by friction, but it has to be treated separately for two reasons:

The perpendicular force is limited to coefficient of friction times the normal force. If that is not enough to stop the ball, it will skid on the surface.The perpendicular force, and this depends on the specific geometry, does not pass through the centre of mass of the ball. Therefore it imparts a moment on the ball that causes it to start rotating. And once the ball is rotating so that the point of contact is stationary, there is no momentum to cause any friction force anymore and the friction force disappears and stops decelerating the ball.

So what happens is that the vertical component of the velocity will be reversed, while the horizontal component will be somewhat reduced with the corresponding amount of kinetic energy transferred to energy of rotation. The rotation will always eliminate the friction force before the horizontal component of velocity is zeroed, so the ball will always continue in the same direction, just a bit slower.

If you instead threw an elastic box (which could not start rotating freely) it could actually bounce back.

7 0
2 years ago
An object accelerating may be changing in what two ways
Oksana_A [137]
Velocity and direction
8 0
3 years ago
A 100 kg roller coaster comes over the first hill at 2 m/sec (vo). The height of the first hill (h) is 20 meters. See roller dia
aleksandr82 [10.1K]

For the 100 kg roller coaster that comes over the first hill of height 20 meters at 2 m/s, we have:

1) The total energy for the roller coaster at the <u>initial point</u> is 19820 J

2) The potential energy at <u>point A</u> is 19620 J

3) The kinetic energy at <u>point B</u> is 10010 J

4) The potential energy at <u>point C</u> is zero

5) The kinetic energy at <u>point C</u> is 19820 J

6) The velocity of the roller coaster at <u>point C</u> is 19.91 m/s

1) The total energy for the roller coaster at the <u>initial point</u> can be found as follows:

E_{t} = KE_{i} + PE_{i}

Where:

KE: is the kinetic energy = (1/2)mv₀²

m: is the mass of the roller coaster = 100 kg

v₀: is the initial velocity = 2 m/s

PE: is the potential energy = mgh

g: is the acceleration due to gravity = 9.81 m/s²

h: is the height = 20 m

The<em> total energy</em> is:

E_{t} = KE_{i} + PE_{i} = \frac{1}{2}mv_{0}^{2} + mgh = \frac{1}{2}*100 kg*(2 m/s)^{2} + 100 kg*9.81 m/s^{2}*20 m = 19820 J

Hence, the total energy for the roller coaster at the <u>initial point</u> is 19820 J.

   

2) The <em>potential energy</em> at point A is:

PE_{A} = mgh_{A} = 100 kg*9.81 m/s^{2}*20 m = 19620 J

Then, the potential energy at <u>point A</u> is 19620 J.

3) The <em>kinetic energy</em> at point B is the following:

KE_{A} + PE_{A} = KE_{B} + PE_{B}

KE_{B} = KE_{A} + PE_{A} - PE_{B}

Since

KE_{A} + PE_{A} = KE_{i} + PE_{i}

we have:

KE_{B} = KE_{i} + PE_{i} - PE_{B} =  19820 J - mgh_{B} = 19820 J - 100kg*9.81m/s^{2}*10 m = 10010 J

Hence, the kinetic energy at <u>point B</u> is 10010 J.

4) The <em>potential energy</em> at <u>point C</u> is zero because h = 0 meters.

PE_{C} = mgh = 100 kg*9.81 m/s^{2}*0 m = 0 J

5) The <em>kinetic energy</em> of the roller coaster at point C is:

KE_{i} + PE_{i} = KE_{C} + PE_{C}            

KE_{C} = KE_{i} + PE_{i} = 19820 J      

Therefore, the kinetic energy at <u>point C</u> is 19820 J.

6) The <em>velocity</em> of the roller coaster at point C is given by:

KE_{C} = \frac{1}{2}mv_{C}^{2}

v_{C} = \sqrt{\frac{2KE_{C}}{m}} = \sqrt{\frac{2*19820 J}{100 kg}} = 19.91 m/s

Hence, the velocity of the roller coaster at <u>point C</u> is 19.91 m/s.

Read more here:

brainly.com/question/21288807?referrer=searchResults

I hope it helps you!

3 0
2 years ago
Alec says the force of gravity is stronger on a piece of paper after it’s crumpled. His classmate, Jordan, disagrees. Alec “prov
Anika [276]
No, gravity acts equally on all objects.  The crumpled paper falls faster because it resists the drag force due to the atmosphere because of its compact size.  A flat piece of paper has an extended body and "catches" the air and falls more slowly.  In a vacuum they would fall at the same rate either way.
8 0
3 years ago
An energy resource that can be replaced in a reasonable short period of time is call an
Semenov [28]
A Renewable resource
6 0
3 years ago
Read 2 more answers
Other questions:
  • Surface waves move only in a back and forth motion.<br> True <br> False
    7·2 answers
  • Once precipitation has fallen on land what paths are available to it
    6·1 answer
  • Winds are turned to the left in the Southern Hemisphere.<br><br> true or false
    11·1 answer
  • Water from a fire hose is directed horizontally against a wall at a rate of 69.4 kg/s and a speed of 19.6 m/s. Calculate the mag
    7·1 answer
  • How much current is in a circuit that includes a 9.0-volt battery and a bulb with a resistance of 4.0 ohms? A. 0.44 amps B. 36 a
    10·1 answer
  • What is the name of a variable that you change in an experiment
    5·2 answers
  • What is the lowest frequency that will resonate in an organ pipe 2.00 m in length, closed at one end? The speed of sound in air
    15·1 answer
  • Our solar system is made up of the Sun, 8 planets, and other bodies such as
    14·1 answer
  • As shown in the diagram, an inflated balloon released from rest moves horizontally with velocity "v". The velocity of the balloo
    14·2 answers
  • How Do I get A Picture For My Profile, It keeps saying my pistures won't work
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!