Answer:
58.44 g/mol
Explanation:
In this problem, make sure to remember that volume is measured in mL, L or any other units of volume. Remember that g represents grams, and grams is a measure of mass.
However, independent of what mass or what volume we take, molar mass is known to be an intensive property. That is, molar mass doesn't depend on any external conditions or any measurements.
Molar mass solely depends on the chemical structure of a compound and is a constant number at any given conditions.
In this problem, we are given sodium chloride, NaCl. In order to find its molar mass, we need to refer to the periodic table, find the atomic masses of Na and Cl and then add them up to have the molar mass of NaCl:

Answer:
O Option 1
Explanation:
IF ENERGY IS RELEASED, THEN ENERGY RELEASED SHOULD BE SUBTRACTED FROM ORIGINAL.
(16.32 X 10^-19) - (5.4 X 10^-19)
10.92 X 10^-19
Answer is: 4.45 grams of methane gas <span>need to be combusted</span>.
Balanced chemical reaction: CH₄ + 2O₂ → CO₂ + 2H₂O.
Ideal gas law: p·V =
n·R·T.<span>
p = 1.1 atm.
T = 301 K.
V(H</span>₂O) <span>= 12.5 L.
R = 0,08206 L·atm/mol·K.
</span>n(H₂O) = <span>1.1 atm ·
12.5 L ÷ 0,08206 L·atm/mol·K · 301 K.
</span>n(H₂O) = 0.556 mol.
From chemical reaction: n(H₂O) : n(CH₄) = 2 : 1.
n(CH₄) = 0.556 mol ÷ 2 = 0.278 mol.
m(CH₄) = 0.278 mol · 16 g/mol.
m(CH₄) = 4.448 g.
Answer:
There are seven significant figures
Explanation:
There are seven different digits within the number. Three 0s, one 2, one 8, and two 3s, adding up to seven different numbers. You exclude the first 0 when the number is a decimal, leaving seven significant figures. Hope this makes sense! :)
The answer is A. Solids only