Answer:
The chemistry of iron is dominated by the +2 and +3 oxidation states i.e. iron(II) and iron(III) complexes e.g. Fe2+ and Fe3+ complex ions with selected ligands, usually of an octahedral shape, a few tetrahedral iron(III) complexes are mentioned too. The reactions of the aqueous ions iron(II) and iron(III) with ammonia, sodium hydroxide and sodium carbonate are described and explained as are complexes of iron(III) with the chloride ion and cyanide ion.
principal oxidation states of iron, redox reactions of iron, ligand substitution displacement reactions of iron, balanced equations of iron chemistry, formula of iron complex ions, shapes colours of iron complexes, formula of compoundsExplanation:
False. It is a physical change because the molecules of the bread didn't change only the form of the bread changed.
Answer:
False- The number of electrons does not affect the type of element.
Explanation:
The adding/removing of protons is what changes the type of element. for example, if you have a molecule of Boron, which has 5 protons, and you add one proton, you will have created a carbon molecule with 6 protons. The number of protons of an element is its atomic number. Elements can have varying numbers of both electrons and neutrons without changing the type of element.
<span>Ionization energy (IE) is the amount of energy required to remove an electron.
If you observe the IEs sequentially, there is a large gap between the 2nd and 3rd. This suggests it is difficult to remove more than 2 two electrons. Elements that lose two electrons to become more stable are found in the Group 2A (2 representing the number of electrons in the outermost valence shell).</span>