3.16 X 10^-11 M is the [OH-] concentration when H3O+ = 1.40 *10^-4 M.
Explanation:
data given:
H30+= 1.40 X 10^-4 M\
Henderson Hasslebalch equation to calculate pH=
pH = -log10(H30+)
putting the values in the equation:
pH = -log 10(1.40 X 10^-4 M)
pH = 3.85
pH + pOH =14
pOH = 14 - 3.85
pOH = 10.15
The OH- concentration from the pOH by the equation:
pOH = -log10[OH-]
10.5= -log10[OH-]
[OH-] = 10^-10.5
[OH-] = 3.16 X 10^-11 is the concentration of OH ions when hydronium ion concentration is 1.40 *10^-4 M.
A bond allows metal to conduct electricity <span />
The given question is incomplete. The complete question is:
The change in entropy is related to the change in the number of moles of gas molecules. Determine the change in moles of gas for each of the reactions and decide if the entropy increases decreases or has little to no change:
A. 
B. 
C. 
D.
Answer: A.
: decreases
B.
: decreases
C.
: no change
D.
: increases
Explanation:
Entropy is defined as the randomness of the system.
Entropy is said to increase when the randomness of the system increase, is said to decrease when the randomness of the system decrease and is said to have no change when the randomness remains same.
In reaction
, as gaseous reactant is changed to solid product, entropy decreases.
In reaction
, as 4 moles of gaseous reactants is changed to 2 moles of gaseous product, entropy decreases.
In reaction
, as 3 moles of gaseous reactants is changed to 3 moles of gaseous product, entropy has no change.
In reaction
, as 1 mole of gaseous reactant is changed to 3 moles of gaseous product, entropy increases.
Answer:
Mass of sample in mg = 15,285 mg
Explanation:
Given:
Volume of urine sample = 15 ml
Density of sample = 1.019 g/ml
FInd:
Mass of sample in mg
Computation:
Mass = density x volume
Mass of sample in mg = Volume of urine sample x Density of sample
Mass of sample in mg = 1.019 x 15
Mass of sample in mg = 15.285 gram
Mass of sample in mg = 15.285 x 1,000
Mass of sample in mg = 15,285 mg
Answer:
Radium-226 is a radioactive decay product in the uranium-238 decay series and is the precursor of radon-222. Radium-228 is a radioactive decay product in the thorium-232 decay series. Both isotopes give rise to many additional short-lived radionuclides, resulting in a wide spectrum of alpha, beta and gamma radiations.