Answer:
105 m/s
Explanation:
Given that the speed of train A,
= 45 m/s from west to east.
Speed of train B,
= 60 m/s from east to west.
Train B is moving in the opposite direction with respect to the speed of train A. Assuming that the speed from east to west direction is positive.
So, the speed of train A from east to west= - 45 m/s
The speed of train B w.r.t train A
m/s
Hence, the speed of train B w.r.t train A is 105 m/s from east to west.
Answer:
4v/3
Explanation:
Assume elastic collision by the law of momentum conservation:

where v is the original speed of car 1, v1 is the final speed of car 1 and v2 is final speed of car 2. m1 and m2 are masses of car 1 and car 2, respectively
Substitute 

Divide both side by
, then multiply by 6 we have



So the final speed of the second car is 4/3 of the first car original speed
Answer:
its 1/2 the mass of the object times by its velocity ^ 2
Answer:
K =6.697 Kg/s²
Explanation:
Given:
delta m =41 g = 0.041 kg
delta x = 6cm = 0.06m
g = 9.8 m/s²
according to the given formula
K = delta m g /delta x
K = (0.041 kg × 9.8 m/s²) / 0.06m
K =6.697 Kg/s²
1. friction between water molecules
2. the wave spreads out onto a larger and larger area, so per unit area, the energy of the wave goes down