Answer:
b) +2 and +3.
Explanation:
Hello,
In this case, given the molecular formulas:

And:

We can relate the subscripts with the oxidation states by knowing that they are crossed when the compound is formed, for that reason, we notice that oxygen oxidation state should be -2 for both cases and the oxidation state of X in the first formula must be +2 since both X and O has one as their subscript as they were simplified:

Moreover, for the second case the oxidation state of X should be +3 in order to obtain 3 as the subscript of oxygen:

Thus, answer is b)+2 and +3
Best regards.
Answer:
The specific heat of the metal is 2.09899 J/g℃.
Explanation:
Given,
For Metal sample,
mass = 13 grams
T = 73°C
For Water sample,
mass = 60 grams
T = 22°C.
When the metal sample and water sample are mixed,
The addition of metal increases the temperature of the water, as the metal is at higher temperature, and the addition of water decreases the temperature of metal. Therefore, heat lost by metal is equal to the heat gained by water.
Since, heat lost by metal is equal to the heat gained by water,
Qlost = Qgain
However,
Q = (mass) (ΔT) (Cp)
(mass) (ΔT) (Cp) = (mass) (ΔT) (Cp)
After mixing both samples, their temperature changes to 27°C.
It implies that
, water sample temperature changed from 22°C to 27°C and metal sample temperature changed from 73°C to 27°C.
Since, Specific heat of water = 4.184 J/g°C
Let Cp be the specific heat of the metal.
Substituting values,
(13)(73°C - 27°C)(Cp) = (60)(27°C - 22℃)(4.184)
By solving, we get Cp =
Therefore, specific heat of the metal sample is 2.09899 J/g℃.
I’d say market and distribution would be the next step
Answer:
21.5 g.
Explanation:
Hello!
In this case, since the reaction between the given compounds is:

We can see that according to the law of conservation of mass, which states that matter is neither created nor destroyed during a chemical reaction, the total mass of products equals the total mass of reactants based on the stoichiometric proportions; in such a way, we first need to compute the reacted moles of Li3P as shown below:

Now, the moles of Li3P consumed by 15 g of Al2O3:

Thus, we infer that just 0.29 moles of 0.73 react to form products; which means that the mass of formed products is:

Therefore, the total mass of products is:

Which is not the same to the reactants (53 g) because there is an excess of Li₃P.
Best Regards!
I think the best answer is the last option. A scatter plot is the appropriate type of graph for the student to use to show the percent samples per group. This plot is somewhat similar to line graphs. However, they are use for a specific purpose which is to show the relationship between two parameters. In this case, the correlation between pH and the percent of samples.