Grams of Phosphorus = 4.14 grams
Grams of white compound = 27.8 grams
Grams of Chlorine would be = 27.8 - 4.14 = 23.66 grams
Calculating moles which would be grams / molar mass
Molar mass of P = 30.97 grams / moles; Molar mass of Cl = 35.45 grams / moles
Moles of Phosphorus = 4.14 grams / 30.97 grams / moles = 0.1337 moles
Moles of Chlorine = 23.66 grams / 35.45 grams / moles = 0.6674 moles
Calculating the ratios by dividing with the small entity
P = 0.1337 moles / 0.1337 moles = 1
Cl = 0.6674 moles / 0.1337 moles = 5
So the empirical formula would be PCl5
Substance P replaces X in the compound XY
this is the characteristic of decomposition reaction
Answer:
Explanation:
conjugate acid, based on Brønsted–Lowry acid–base theory, is a chemical compound that is formed by the reception of a proton by a base
a. CH₃COOH + H₂O ⇌ H₃0⁺ + CH₃C00-
Acid <> CH₃COOH
Base <> H₂O
Conjugate acid <> H₃0 +
Conjugate base <>CH₃C00-
b. HCO₃ + H₂O ⇌ H₂CO₃⁻ + OH⁻
Acid <> H₂O
Base <> HCO₃
Conjugate acid <> H₂CO₃⁻
Conjugate base <>OH⁻
C. HNO₃ + SO₄²⁻ ⇌ HSO₄⁻ + NO₃⁻
Acid <>HNO₃
Base <>SO₄²⁻
Conjugate acid <>HSO₄⁻
Conjugate base <>NO₃⁻
A Bronsted acid is reffered to as a proton donor while a Bronsted base is a proton acceptor
Answer:
The correct answer is 0.047 mol/L
Explanation:
The atmospheric air is a mixture of gases. We can assume an ideal behavior of the gas and use the ideal gas equation:
PV= nRT
where P is the pressure, V is the volume, n is the number of moles, R is a constant (0.082 L.atm/K.mol) and T is the temperature in K.
We have to first convert the pressure from Torr to atm:
760 Torr= 1 atm
⇒ 718 Torr x 1 atm/760 Torr = 0.945 atm
Then, we convert the temperature from ºC to K:
0ºC = 273 K
⇒ -29ºC+273= 244 K
Finally, we introduce the data in the equation and calculate de densitiy, which is the moles per liters of gas (n/V):
PV = nRT
n/V= P/RT
n/V = (0.945 atm)/(0.082 L.atm/K.mol x 244 K) = 0.047 mol/L
Answer:
I think it would be C but don't quote me on it
Explanation:
It adds another obstacle for the current to go through