Answer is: <span>a. c6h14 and c10h20.
This pair will </span>most likely form a homogeneous solution because they are both nonpolar substances and "li<span>ke dissolves like".
Other pairs will not form homogeneous solution because nonpolar substances have low solubility in polar or ionic substances (for example LiBr is ionic and C</span>₅H₁₂ is nonpolar).
First is homogeneous and so is the third. second is heterogeneous
Answer:
FBr is a chemical formula representing "flourine monobromide."
Explanation:
Of course, FBR could represent a number of things, from the Federal Board of Revenue to a fluidized bed reactor. I gave the answer I did because you listed this question as Chemisty.
Answer:
459.126 grams of calcium chloride is needed to prepare 2.657 L of a 1.56 M solution
Explanation:
Molarity is a measure of the concentration of a solute in a solution that indicates the amount of moles of solute that appear dissolved in one liter of the mixture. In other words, molarity is the number of moles of solute that are dissolved in a given volume.
The Molarity of a solution is determined by the following expression:

Molarity is expressed in units 
In this case:
- Molarity: 1.56 M= 1.56

- Number of moles of calcium chlorine= ?
- Volume= 2.657 liters
Replacing:

Solving:
Number of moles of calcium chlorine= 1.56 M* 2.657 liters
Number of moles of calcium chlorine= 4.14 moles
In other side, you know:
- Ca: 40 g/mole
- Cl: 35.45 g/mole
Then the molar mass of the calcium chloride CaCl₂ is:
CaCl₂= 40 g/mole + 2* 35.45 g/mole= 110.9 g/mole
Now it is possible to apply the following rule of three: if in 1 mole there is 110.9 g of CaCl₂, in 4.14 moles of the compound how much mass is there?

mass= 459.126 g
<u><em>459.126 grams of calcium chloride is needed to prepare 2.657 L of a 1.56 M solution</em></u>