Answer:
[OH-] for this solution is 4.255*10^-12
Explanation:
We are given
[H+] = 2.35 × 10-3 M
we need to find the concentration of [OH-]
we know from Equilibrium
[H+][OH-] = 10^-14
[OH-] = 10^14/2.35*10^10^-3
[OH-] = 0.4255*10^-11
[OH] = 4.255*10^-12
Therefore the Concentration of [OH-] for this solution is 4.255*10^-12
Answer:
a or
Explanation:
im guessing that it has to involve something with a negative
Answer:
Molarity of Na₂CO₃ = 0.25M
% mass = 2.69
Explanation:
Molarity means mole of solute in 1L of solution
Molar mass of solute (Na₂CO₃) = 105,98 g/m
Moles = mass / molar mass → 6.73 g / 105.98 g/m = 0.0635 m
Mol/L = [M]
0.0635 mol/0.250L = 0.25M
Density of solution = Solution mass / Solution volume
1 g/ml = Solution mass / 250 mL → Solution mass is 250g
% mass will be:
In 250 g of solution we have 6.73 g of solute
in 100 g of solution we have (100 . 6.73)/250 = 2.69
Explanation:
The given molecule is
H3C - C ≡ C - CH3
The numbering order is shown below:
H3C - C ≡ C - CH3
1 2 3 4
So, the alkyne group is in the second position.
The carbon chain has four carbons.
Hence, the IUPAC name of the given compound is:
2-butyne.