B i believe not really sure but that math i did seems about right
Answer: time is the same
Explanation: the distance(H) is the same in each case .
we drop the balls , no drag force using basic kimnematics
y =gt*t/2 , yo=0 , vo=0 , y=H , so : t= sqrt(2H/g)
comment: if distance H starts to grow....we could begin to note a difference because of gravity g is smaller as we go up
Answer:
180 [J].
Explanation:
1) the required work [W] can be calculated as difference of the energy: W=E₂-E₁, where E₁=mgh₁ - the energy before lifting, E₂=mgh₂ - the energy after lifting;
2) W=mgh₂-mgh₁, where m - mass; g=10 [N/kg], h - height;
3) then the required work [W]:
W=mg*(h₂-h₁)=30*6=180 [J].
Answer:
Work Done= 3150J
Power= 1.75W
Explanation:
Work Done= Force x the distance travelled in the direction of the force (W= f x d)
Weight is a force, i think the qn. stated it wrongly, it should be 70N not 70kg.
Work Done= 70 x 45
=3150J
Power= Work Done/Time
=3150/(30x60)
*convert minutes to seconds since the S.I. unit of Power is joules/seconds(J/s) or watts(W)
=1.75W