Answer:
The number of turns in the solenoid is 22366.
Explanation:
The number of turns in the solenoid can be found using the following equation:

Where:
B: is the magnetic field = 8.90 T
L: is the solenoid's length = 0.300 m
N: is the number of turns =?
I: is the current = 95 A
μ₀: is the magnetic constant = 4π×10⁻⁷ H/m
By solving equation (1) for N we have:

Therefore, the number of turns in the solenoid is 22366.
I hope it helps you!
Answer: The electric field is: a) r<a , E0=; b) a<r<b E=ρ (r-a)/εo;
c) r>b E=ρ b (b-a)/r*εo
Explanation: In order to solve this problem we have to use the Gaussian law in diffrengios regions.
As we know,
∫E.dr= Qinside/εo
For r<a --->Qinside=0 then E=0
for a<r<b er have
E*2π*r*L= Q inside/εo in this case Qinside= ρ.Vol=ρ*2*π*r*(r-a)*L
E*2π*r*L =ρ*2*π*r* (r-a)*L/εo
E=ρ*(r-a)/εo
Finally for r>b
E*2π*r*L =ρ*2*π*b* (b-a)*L/εo
E=ρ*b* (b-a)*/r*εo
Answer:
The vector form is as shown in the attachment
Explanation:
The figure as shown in the diagram, indicates that the car is moving along the road at a constant speed. Centripetal acceleration comes into play for an object moving in a circular motion at uniform speed. The centripetal acceleration is the acceleration experienced by an object while in uniform circular motion.
Mathematically from centripetal acceleration; a = v2/r
The equation shows that there is an inverse relationship between the acceleration and the radius of curvature as such the radius of curvature at the point A will be more than the radius of curvature at the point C, this shows that the centripetal acceleration at point C will be more than the centripetal acceleration at point A.
The attachment shows the figure and the representation in vectorial form.
The time
it takes for the key to fall 44 m is

(notice I'm taking the downward direction to be positive)
The boat, moving at a presumably constant speed, then has 3.0 s to travel 19 m to the point of impact, which means its speed must be

Answer:
Green part of the visible spectrum.
X ray part of the electromagnetic spectrum.
Infrared part of the electromagnetic spectrum.
Explanation:
Wien's displacement law

Where, b = Wien's displacement constant = 2.898×10⁻³ mK
T = Temperature in kelvin

So, the wavelength would be of around the green part of the visible spectrum.

So, the wavelength would be of around the X ray part of the electromagnetic spectrum.
Human body temperature = 37°C = 37+273.15 = 310.15 K

So, the wavelength would be of around the Infrared part of the electromagnetic spectrum.