Answer:
Below:
Explanation:
An iron will use 800 to 2000 watts, with an average iron using 1100 watts when heated on high.
sodium ions and chloride ions
the answer is d hope this helps
Answer:
The metal has a heat capacity of 0.385 J/g°C
This metal is copper.
Explanation:
<u>Step 1</u>: Data given
Mass of the metal = 21 grams
Volume of water = 100 mL
⇒ mass of water = density * volume = 1g/mL * 100 mL = 100 grams
Initial temperature of metal = 122.5 °C
Initial temperature of water = 17°C
Final temperature of water and the metal = 19 °C
Heat capacity of water = 4.184 J/g°C
<u />
<u>Step 2: </u>Calculate the specific heat capacity
Heat lost by the metal = heat won by water
Qmetal = -Qwater
Q = m*c*ΔT
m(metal) * c(metal) * ΔT(metal) = - m(water) * c(water) * ΔT(water)
21 grams * c(metal) *(19-122.5) = -100 * 4.184 * (19-17)
-2173.5 *c(metal) = -836.8
c(metal) = 0.385 J/g°C
The metal has a heat capacity of 0.385 J/g°C
This metal is copper.
43 inHg = 43 inHg*2.54cm/in = 109.22cmHg * 10 mm/cm = 1092.2 mmHg
14.7 psi = 760 mmHg
1092.2mmHg * 14.7psi / 760 mmHg = 21.13 psi
Answer: option D. 21.13 psi