Step 1: Write Imbalance Equation
CH₃CHO + O₂ → CO₂ + H₂O
Step 2: Balance Carbon Atoms:
There are 2 carbon atoms at reactant side and one at product side. So multiply CO₂ with 2 to balance them. i.e.
CH₃CHO + O₂ → 2 CO₂ + H₂O
Step 3: Balance Hydrogen Atoms:
There are 4 hydrogen atoms at reactant side and 2 Hydrogen atoms at product side. So, multiply H₂O by 2 to balance Hydrogen on both sides. i.e.
CH₃CHO + O₂ → 2 CO₂ + 2 H₂O
Step 4: Balance Oxygen Atoms:
There are 3 Oxygen atoms at reactant side and 6 Oxygen atoms at product side. In order to balance them multiply O₂ on reactant side by 2.5 (5/2). i.e
CH₃CHO + 5/2 O₂ → 2 CO₂ + 2 H₂O
Step 6: Eliminate Fraction:
Multiply overall equation by 2 to eliminate fraction. i.e.
2 CH₃CHO + 5 O₂ → 4 CO₂ + 4 H₂O
I Cant Answer your question but maybe this will help
Volume Changes for Gases
Particles in a gas have more freedom of movement than they do in a liquid. According to the ideal gas law, the pressure (P) and volume (V) of a gas are mutually dependent on temperature (T) and the number of moles of gas present (n). The ideal gas equation is PV = nRT, where R is a constant known as the ideal gas constant. In SI (metric) units, the value of this constant is 8.314 joules ÷ mole - degree K.
Pressure is constant: Rearranging this equation to isolate volume, you get: V = nRT ÷ P, and if you keep the pressure and number of moles constant, you have a direct relationship between volume and temperature: ∆V = nR∆T ÷ P, where ∆V is change in volume and ∆T is change in temperature. If you start from an initial temperature T0 and pressure V0 and want to know the volume at a new temperature T1 the equation becomes:
V1 = [n • R • (T1 - T0) ÷ P] +V0
Temperature is constant: If you keep the temperature constant and allow pressure to change, this equation gives you a direct relationship between volume and pressure:
V1 = [n • R • T ÷ (P1 - P0)] + V0
Notice that the volume is larger if T1 is larger than T0 but smaller if P1 is larger than P0.
Pressure and temperature both vary: When both temperature and pressure vary, the the equation becomes:
V1 = n • R • (T1 - T0) ÷ (P1 - P0) + V0
Plug in the values for initial and final temperature and pressure and the value for initial volume to find the new volume.
BBdrice!! LOLOLOL i think its weird but creative
The answer is A glucose is created
Answer:
Pi = 0.25[P(TTL)/n(TTL)]
Explanation:
Let Total Pressure = P(TTL) and Total moles =n(TTL) => n(i)/n(TTL) = P(i)/P(TTL)
Given n(i) = 0.25 => Pi = 0.25[P(TTL)/n(TTL)]