Answer:
<h2>102.5166</h2>
Explanation:
Molar mass of N2 = 28.01
3.66 moles x 28.01 grams/mole = 102.5166
We can write the balanced equation for the synthesis reaction as
H2(g) + Cl2(g) → 2HCl(g)
We use the molar masses of hydrogen chloride gas HCl and hydrogen gas H2 to calculate for the mass of hydrogen gas H2 needed:
mass of H2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol H2 / 2 mol HCl) *
(2.02 g H2 / 1 mol H2)
= 4.056 g H2
We also use the molar masses of hydrogen chloride gas HCl and chlorine gas CL2 to calculate for the mass of hydrogen gas H2:
mass of CL2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol Cl2 / 2 mol HCl) *
(70.91 g Cl2 / 1 mol Cl2)
= 142.4 g Cl2
Therefore, we need 4.056 grams of hydrogen gas and 142.4 grams of chlorine gas to produce 146.4 grams of hydrogen chloride gas.
One molecule of ammonia is composed of two atoms of nitrogen and three atoms of hydrogen. Option B.
<h3>What is an equation?</h3>
The term chemical equation has to do with the presentation of a chemical reaction on paper in a way that it can be easily understood. It is easy to write an equation to show what is going on in a reaction system.
Now we have the reactions as shown in the question. In this reaction which is the synthesis of ammonia and occurs industrially in the Haber process. The statement that is not true is that; one molecule of ammonia is composed of two atoms of nitrogen and three atoms of hydrogen. Option B.
Learn more about chemical equation:brainly.com/question/28294176
#SPJ1
The ammonia gas is absorbed in the concentrated brine to produce aqueous sodium chloride and aqueous ammonia. This ammoniation process is exothermic, so energy is released as heat. The ammonia tower eventually needs to be cooled.