Answer:
The coefficient of friction in the hall is 0.038
Explanation:
Given;
mass of the Parker, m = 73.2 kg
applied force on the parker, F = 123 N
frictional force, Fs = 27.4 N
the coefficient of friction in the hall = ?
frictional force is given by;
Fs = μN
Where;
μ is the coefficient of friction
N is normal reaction = mg
Fs = μmg
μ = Fs / mg
μ = (27.4) / (73.2 x 9.8)
μ = 0.038
Therefore, the coefficient of friction in the hall is 0.038
Answer:
a. Both wires have the same resistivity
Explanation:
For the resistance of a wire , following formula holds good .
R = ρ l / S , R is resistance , l is length , S is cross sectional area and ρ is resistivity of the material that the wire is made of. Resistance is dependent on length and cross sectional area but resistivity does not depend upon length or cross sectional area . It only depends upon the type of material.
If we replace copper wire with aluminium wire , then resistivity will change .
Hence , since the wire remains made of copper , resistivity will not change.
Answer:
Explanation:
Conclusion is simple you can just say that it is the value written in words form only.
Nothing else is written about it
Answer:
from a lesser hight
Explanation:
because you need less force
hope its right if it is mark brainlyest ;)