1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
charle [14.2K]
3 years ago
7

An organ pipe open at both ends is 1.5 m long. A second organ pipe that is closed at one end and open at the other is 0.75 m lon

g. The speed of sound in the room is 330 m/s. Which of the following sets of frequencies consists of frequencies which can be produced by both pipes?
a. 110Hz,220Hz, 330 Hz
b. 220Hz 440Hz 66 Hz
c. 110Hz, 330Hz, 550Hz
d. 330 Hz, 550Hz, 440Hz
e. 660Hz, 1100Hz, 220Hz
Physics
1 answer:
telo118 [61]3 years ago
6 0

Answer:

A. 110Hz,220Hz, 330 Hz

Explanation:

for organ open at open both ends;

the length of the organ for the fundamental frequency, L = A---->N + N----->A

A---->N  = λ /4 and N----->A = λ /4

L = λ /4 + λ /4 = λ /2

L = \frac{\lambda}{2} \\\\\lambda = 2L

λ  = 2 x 1.5m = 3.0 m

Wave equation is given by;

V = Fλ

Where;

V is the speed of sound

F is the frequency of the wave

F = V/ λ

F₀ = V / 2L

Where;

F₀  is the fundamental frequency

F₀ = 330 / 2(1.5)

F₀ = 330 / 3

F₀ = 110 Hz

the length of the organ for the first overtone, L = A---->N + N----->A + A----->N +  N----->A

L = 4λ /4

L = λ

λ = 1.5 m

F₁ = 330 / 1.5

F₁ = 220 Hz

Thus, F₁ = 2F₀

For open organ at one end

the length of the organ for the fundamental frequency, L = N------A

L = λ /4

λ = 4L

F₀ = V/4L

F₀ = 330 / (4 x 0.75)

F₀ = 110 Hz

the length of the organ for the first overtone, L = N-----N + N-----A

L = λ/2 + λ / 4

L = 3λ /4

F₁ = 3F₀

F₁ = 3 x 110

F₁ = 330 Hz

Thus the fundamental frequency for both organs is 110 Hz,

The first overtone for the organ open at both ends is 220 Hz

The first overtone for the organ open at one end is 330 Hz

The correct option is "A. 110Hz,220Hz, 330 Hz"

You might be interested in
How can tidal force from the moon affect our earth?​
VARVARA [1.3K]

Answer:

sorry but I can understand the question

5 0
3 years ago
Read 2 more answers
Who makes the first atomic bomb?​
Svetradugi [14.3K]

Answer:

Robert Oppenheimer made the first atomic bomb.

7 0
3 years ago
Read 2 more answers
A thermometer is removed from a room where the temperature is 70° F and is taken outside, where the air temperature is 10° F. Af
vekshin1

Answer:

T=51.64^\circ F

t=180.10s

Explanation:

The Newton's law in this case is:

T(t)=T_m+Ce^{kt}

Here, T_m is the air temperture, C and k are constants.

We have

70^\circ F in t=0

So:

T(0)=70^\circ F\\T(0)=10^\circ F+Ce^{k(0)}\\70^\circ F=10^\circ F+C\\C=70^\circ F-10^\circ F=60^\circ F

And we have 60^\circ F in t=30 s, So:

T(30)=60^\circ F\\T(30)=10^\circ F+(60^\circ F)e^{k(30)}\\60^\circ F=10^\circ F+(60^\circ F)e^{k(30)}\\50^\circ F=(60^\circ F)e^{k(30)}\\e^{k(30)}=\frac{50^\circ F}{60^\circ F}\\(30)k=ln(\frac{50}{60})\\k=\frac{ln(\frac{50}{60})}{30}=-0.0061

Now, we have:

T=10^\circ F+(60^\circ F)e^{-0.0061t}(1)

Applying (1) for t=1 min=60s:

T=10^\circ F+(60^\circ F)e^{-0.0061*60}\\T=10^\circ F+(60^\circ F)0.694\\T=10^\circ F+41.64^\circ F\\T=51.64^\circ F

Applying (1) for T=30^\circ F:

30^\circ F=10^\circ F+(60^\circ F)e^{-0.0061t}\\30^\circ F-10^\circ F=(60^\circ F)e^{-0.0061t}\\-0.0061t=ln(\frac{20}{60})\\t=\frac{ln(\frac{20}{60})}{-0.0061}=180.10s

8 0
3 years ago
Speed is determined based on two factors. What are they
a_sh-v [17]

Answer:

distance and time

Explanation: the farther you go and how much time it will take you

7 0
3 years ago
A:10i - 2j -4k and B: i +7j - k. Determine |A-B| ​
maksim [4K]

<em>A</em> - <em>B</em> = (10<em>i</em> - 2<em>j</em> - 4<em>k</em>) - (<em>i</em> + 7<em>j</em> - <em>k</em>)

<em>A</em> - <em>B</em> = 9<em>i</em> - 9<em>j</em> - 3<em>k</em>

|<em>A</em> - <em>B</em>| = √(9² + (-9)² + (-3)²) = √189 = 3√19

8 0
2 years ago
Other questions:
  • The distance between two successive maximaof
    7·1 answer
  • A fragment of a collapsing gas cloud that comes to equilibrium with a central temperature of 4 million k will become a:
    11·1 answer
  • The burning of fossil fuels releases gas into the air, the gas is called?
    6·1 answer
  • benzene c6h6 and toluene c6h5ch3 for ideal solutions. at 35c the vapor pressure of benzene is 160 torr and that of toluene is 50
    10·1 answer
  • A gas has an initial volume of 212 cm3 at a temperature of 293 K and a pressure of 0.98 atm. What is the final pressure of the g
    14·2 answers
  • A charge of -2.720 μC is located at (3.000 m , 4.591 m ), and a charge of 1.600 μC is located at (-2.626 m , 0).There is one poi
    9·1 answer
  • How are mass and inertia related?
    5·1 answer
  • Consider a traveling wave described by the formula
    8·1 answer
  • Assume that a vaulter is able to carry a vaulting pole while running as fast as Carl Lewis in his world record 100-m dash (aroun
    13·1 answer
  • Energy released by the sun results from the process where atomic nuclei
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!