Answer:
The change of the volume of the device during this cooling is 
Explanation:
Given that,
Mass of oxygen = 10 g
Pressure = 20 kPa
Initial temperature = 110°C
Final temperature = 0°C
We need to calculate the change of the volume of the device during this cooling
Using formula of change volume


Put the value into the formula



Hence, The change of the volume of the device during this cooling is 
Answer:
The correct question is:
"Find the energy each gains"
The energy gained by a charged particle accelerated through a potential difference is given by

where
q is the charge of the particle
is the potential difference
For a proton,

And since 
The energy gained by the proton is

For an alpha particle,

Therefore, the energy gained is

Finally, for a singly ionized helium nucleus (a helium nucleus that has lost one electron)

So the energy gained is the same as the proton:

Answer:
Re=160ohm
Explanation:
Step#1
Rt=R1+R2 ( because both are in series)
Rt=(100+220 ) ohm
Rt=320 ohm
Step#2
Rt and R3 are parallel so,
Re= (Rt× R3) ÷ (Rt+R3)
Re= (320×320)÷( 320+320)
Re = 102,400÷ 640
Re=160ohm
Answer:
As the temperature of materials increase, the objects find a phenomenon called change of phase.
This means that if you give enough heat to a liquid, this can change of state from liquid state to gas state (the water evaporates)
So the water in the pan reaches the evaporation temperature (around 100°C) and it starts to evaporate, this is why the water on the outside begins to "dry"
Answer:
Explanation:
At constant pressure , work done by gas = P x ΔV where P is pressure and ΔV is change in volume
ΔV = 9.2 - 5.6 = 3.6 L
3.6 L = 3.6 x 10⁻³ m³
ΔV = 3.6 x 10⁻³ m³
P = 3.7 x 10³ Pa
So work done
= 3.7 x 10³ x 3.6 x 10⁻³ J
= 13.32 J .
( c ) is the answer , because work is done by the gas so it will be positive.