ONEEEEEEEEEEEEEEEEEEEEEEEEE
Answer:
The velocity with which the jumper strike the mat in the landing area is 6.26 m/s.
Explanation:
It is given that,
A high jumper jumps over a bar that is 2 m above the mat, h = 2 m
We need to find the velocity with which the jumper strike the mat in the landing area. It is a case of conservation of energy. let v is the velocity. it is given by :

g is acceleration due to gravity

v = 6.26 m/s
So, the velocity with which the jumper strike the mat in the landing area is 6.26 m/s. Hence, this is the required solution.
Answer:
The mass of the banana is m and it is at height h.
Applying the Law of Conservation of Energy
Total Energy before fall = Total Energy after fall
=
Here, total energy is the sum of kinetic energy and potential energy
+
=
+
(a)
When banana is at height h, it has
= 0 and
= mgh
and when it reaches the river, it has
= 1/2m
and
= 0
Putting the values in equation (a)
0 + mgh = 1/2m
+ 0
mgh = 1/2m
<em>cutting 'm' from both sides</em>
<em> </em>gh = 1/2
v = 
Hence, the velocity of banana before hitting the water is
v = 
Answer:
Give the child a lot of room to your side, which may mean moving closer to the oncoming vehicles.
Explanation:
I majored in Physics.