Anything that can be dissolved/mixed into a solvent. Sugar, salt, acetic acid, etc
Answer:
Explanation:
First last of thermodynamics, just discusses the changes that a system is undergoing and the processes involved in it. It explains conservation of energy for a system undergoing changes or processes.
Second law of thermodynamics helps in defining the process and also the direction of the processes. It tells about the possibility of a process or the restriction of a process. It states that the entropy of a system always increases.
For this to occur the energy contained by a body has to diminish without converting to work or internal energy. So imagine a machine which works with less than efficiency, this means there are losses but they don’t show up anywhere. But the energy is obtained from a higher energy source to lower.
The easy way to do this is with an imaginary device that extracts zero-point energy to heat a quantity of gas. Energy is being created, so the first law is violated, and the entropy of the system is increasing as the gas heats up.
First law is violated since the energy conversion don't apply but the direction of work is applied so second law is satisfied.
Answer: A
Explanation:
From the question, the given parameters are given.
Mass M = 30kg
Radius r = 2 m
Coefficient of static friction μ = 0.8
Coefficient of kinetic friction μ = 0.6
Kinetic friction Fk = μ × mg
Fk = 0.6 × 30 × 9.8
Fk = 176.4 N
The force acting on the merry go round is a centripetal force F.
F = MV^2/r
This force must be greater than or equal to the kinetic friction Fk. That is,
F = Fk
F = 176.4
Substitute F , M and r into the centripetal force formula above
176.4 = (30×V^2)/2
Cross multiply
352.8 = 30V^2
V^2 = 352.8/30
V = sqrt (11.76) m/s
V = 5.24 m/s
Therefore, the maximum speed of the merry go round before the child begins to slip is sqrt (12) m/s approximately
the answer is A and i hope its right
Answer: Light slows down.
Explanation: