The answer is true: the pressure of a gas will decrease as temperature decreases in a rigid container.
This is one of the central gas laws called the Gay-Lussac law that states for a given gas at a constant volume, the pressure of the gas is directly proportional to its temperature. We also know that as temperature reduces, so too does molecular interaction. Increased temperature results in increased pressure, and decreased temperature therefore results in decreased pressure.
Answer:
m/s
Explanation:
Assumption: bullet leaves the muzzle at a speed of V m/s
and velocity of push received by the man be v m/s
According to newton's third law to every action there is always an equal and opposite reaction.
therefore,
mass of man× velocity = mass of bullet×its velocity
⇒70×v= 10×10^-3 ×V
solving the above eqaution we get
therefore
m/s
Answer: hello some of your values are wrongly written hence I will resolve your question using the right values
answer:
stiffness = 1.09 * 10^-6 N/m
Explanation:
Given data:
Length ( l ) = 16 m
radius of wire ( r ) = 3.5 m
mass ( m ) = 5kg
<u>Distance stretched ( Δl ) = 4 * 10^-3 m </u> ( right value )
<u>average bond length ( between atoms ) = 2.3 * 10^-10 m </u>( right value)
first step : calculate the area
area ( A ) = πr^2 = π * ( 3.5)^2 = 38.48 m^2
γ = MgL / A Δl
= [ (5 * 9.81 * 16 ) / ( 38.48 * (4.3*10^-3) ) ]
= 784.8 / 0.165 = 4756.36 N/m^2
hence : stiffness = γ * bond length
= 4756.36 * 2.3 * 10^-10 = 1.09 * 10^-6 N/m
When the mass of the cart changes, the time to travel at 4.6 m/s is 28.11 s.
<h3>
Acceleration of the mule</h3>
The acceleration of mule is calculated as follows;
a = v/t
a = 5/10
a = 0.5 m/s²
<h3>For constant applied force</h3>
F1 = F2
m₁v₁/t₁ = m₂v₂/t₂
(180 x 5) / 10 = (550 x 4.6)/t
90 = 2530/t
t = 2530/90
t = 28.11 s
Thus, when the mass of the cart changes, the time to travel at 4.6 m/s is 28.11 s.
Learn more about acceleration here: brainly.com/question/14344386