Answer:
A <em>concave</em><em> </em><em>lens</em><em> </em><em>is</em><em> </em><em>thinner</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>cen</em><em>ter</em><em> </em><em>and </em><em>thick</em><em>er</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>edges</em><em> </em><em>while</em><em> </em><em>a</em><em> </em><em>convex </em><em>lens </em><em>is</em><em> </em><em>thicker</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>centre</em><em> </em><em>and</em><em> </em><em>thinner</em><em> </em><em>at</em><em> </em><em>the</em><em> edges</em><em>.</em>
No because light travels in waves and can not stop 3 feet away an having power supplied like that
velocity = traveled distance ÷ time of the traveled distance is seconds
velocity = 600 ÷ 60
velocity = 10 m/s
_________________________________
Kinetic Energy = 1/2 × mass × ( velocity )^2
KE = 1/2 × 60 × ( 10 )^2
KE = 30 × 100
KE = 3000 j
Answer:
Option D
Explanation:
The work done can be given by the mechanical energy used to do work, i.e., Kinetic energy and potential energy provided to do the work.
In all the cases, except option D, the energy provided to do the useful work is not zero and hence work done is not zero.
In option D, the box is being pulled with constant velocity, making the acceleration zero and thus Kinetic energy of the system is zero. Hence work done in this case is zero.