Answer:
0.82 mm
Explanation:
The formula for calculation an
bright fringe from the central maxima is given as:

so for the distance of the second-order fringe when wavelength
= 745-nm can be calculated as:

where;
n = 2
= 745-nm
D = 1.0 m
d = 0.54 mm
substituting the parameters in the above equation; we have:

= 0.00276 m
= 2.76 × 10 ⁻³ m
The distance of the second order fringe when the wavelength
= 660-nm is as follows:

= 1.94 × 10 ⁻³ m
So, the distance apart the two fringe can now be calculated as:

= 2.76 × 10 ⁻³ m - 1.94 × 10 ⁻³ m
= 10 ⁻³ (2.76 - 1.94)
= 10 ⁻³ (0.82)
= 0.82 × 10 ⁻³ m
= 0.82 × 10 ⁻³ m 
= 0.82 mm
Thus, the distance apart the second-order fringes for these two wavelengths = 0.82 mm
Kinetic energy: the energy of motion
Work: the change in kinetic energy
Power: the rate of work done
Explanation:
The kinetic energy of an object is the energy possessed by the object due to its motion. Mathematically, it is given by:

where
m is the mass of the object
v is its speed
The work done an object is the amount of energy transferred; according to the energy-work theorem, it is equal to the change in kinetic energy of an object:

where
is the final kinetic energy
is the initial kinetic energy
Finally, the power is the rate of work done per unit time. Mathematically, ti can be expressed as

where
W is the work done
t is the time elapsed
Learn more about kinetic energy, work and power:
brainly.com/question/6536722
brainly.com/question/6763771
brainly.com/question/6443626
brainly.com/question/7956557
#LearnwithBrainly
Answer:
0.5m/s2
Explanation:
acceleration= change in velocity/time taken
= v - u/ t
= 10-5/10
=5/10
= 0.5m/s2
Answer:
The answer is D because when the faults move that is the tectonic plates moving. So earth quakes will be forming when the fault moves.
Explanation: