Answer:
The mass of the aluminum chunk is 258 g
Explanation:
Given;
mass of steel container = 120-g
mass of water = 150 g
initial temperature of water, = 25°C
mass of copper cube,
= 200 g
initial temperature of the copper cube,
= 85°C
initial temperature of the aluminum chunk
= 5.0°C
Neglecting heat loss, heat exchanged by the two metallic objects is the same since initial temperature is equal to final temperature of water.

where;
is specific heat capacity of aluminum
is change in temperature of aluminum
is the specific heat capacity of copper
is the change in temperature of copper

Therefore, the mass of the aluminum chunk is 258 g
Answer:
8 mph
Explanation:
4 miles in half hour so you add 4 more for the second half
2.71 m/s fast Hans is moving after the collision.
<u>Explanation</u>:
Given that,
Mass of Jeremy is 120 kg (
)
Speed of Jeremy is 3 m/s (
)
Speed of Jeremy after collision is (
) -2.5 m/s
Mass of Hans is 140 kg (
)
Speed of Hans is -2 m/s (
)
Speed of Hans after collision is (
)
Linear momentum is defined as “mass time’s speed of the vehicle”. Linear momentum before the collision of Jeremy and Hans is
= 
Substitute the given values,
= 120 × 3 + 140 × (-2)
= 360 + (-280)
= 80 kg m/s
Linear momentum after the collision of Jeremy and Hans is
= 
= 120 × (-2.5) + 140 × 
= -300 + 140 × 
We know that conservation of liner momentum,
Linear momentum before the collision = Linear momentum after the collision
80 = -300 + 140 × 
80 + 300 = 140 × 
380 = 140 × 
380/140= 
= 2.71 m/s
2.71 m/s fast Hans is moving after the collision.
The zone that gases always accelerate upward is the Luminous flame zone. The fire plume is the column of hot gases, flames and smoke rising above a fire. Gases accelerate upward toward the always luminous flame zone. The luminous flame height is the distance between the base of a flame and the point at which the plume is luminous half the time and transparent half the time.
Answer:
The values is 
The direction is out of the plane
Explanation:
From the question we are told that
The magnitude of the electric field is 
The magnitude of the magnetic field is mathematically represented as

where c is the speed of light with value


Given that the direction off the electromagnetic wave( c ) is northward(y-plane ) and the electric field(E) is eastward(x-plane ) then the magnetic field will be acting in the out of the page (z-plane )