In this problem, we have a fixed mass of gas. This means that the number of moles of the gas, , does not change; also, the volume V remains the same, and R is a constant, this means that
So, as the pressure increases, the temperature increases.
However, here we want to understand what happens to the average distance between the molecules.
We have said previously that the number of moles n does not change: and therefore, the total number of molecules in has does not change either.
If we consider one dimension only, we can say that the average distance between the molecules is
where L is the length of the container and N the number of molecules. Since the volume of the container here does not change, L does not change, and since N is constant, this means that the average distance between the molecules remains the same.
We must make it clear that mass and weight are two different terms, the mass is always preserved that is to say this will never vary regardless of the location of the object. While weight is defined as the product of mass by gravitational acceleration.
W = m*g
where:
m = mass = 60 [kg]
g = gravity acceleration = 10 [m/s²]
But in order to calculate the weight of the body on the moon, we must know the gravitational acceleration of the moon. Performing a search of this value on the internet, we find that the moon's gravity is.