Answer:
1. 9.57 × 10^-9 moles.
2. 7.38mol
Explanation:
1.) To find the number of moles there are in the number of particles in an atom, we divide the number of particles (nA) by Avagadro's constant (6.02 × 10^23)
Hence, to find the number of moles (n) of Manganese (Mn), we say:
5.76 x 10^15 atoms ÷ 6.02 × 10^23
5.76/6.02 × 10^(15-23)
= 0.957 × 10^-8
= 9.57 × 10^-9 moles.
2.) Mole = mass/molar mass
Molar mass of sodium chloride (NaCl) = 23 + 35.5
= 58.5g/mol
mole = 431.6 g ÷ 58.5g/mol
mole = 7.38mol
Elements in the same group<span> in the </span>periodic table<span> have </span>similar<span> chemical properties. This is because their atoms have the </span>same<span> number of electrons in the highest occupied energy level. </span>Group<span> 1 </span>elements<span> are reactive metals called the alkali metals.</span>Group<span> 0 </span>elements<span> are unreactive non-metals called the noble gases.</span>
Answer:
When two single single bonds separated by a double bond (e.g C=C-C=C or C=C-C=O in the case of 2-cyclohexenone), the effect of resonance among those there bonds will be observed.
Explanation:
Since the Oxygen atom has higher electronegativity, it will cause the electrons in the resonance bonds 'flow' toward the Oxygen atom, so that the C=C will 'lose' some electron. The signal read for that bond will be different from other alkene structure.
Attachment is the resonance structure of 2-cyclohexene.
Answer:
c I've taken chem 3 times
Explanation:
Answer:
The process of elemental stratification relies on the diffusion velocity, which causes the migration of the different chemical elements within stars.
Explanation: