Butterflies like to drink the sweet nectar from flowers.
It’s the second answer. “it gets used for metabolic process & released as heat” i think.
Answer:
The volume is 2238,6 L
Explanation:
We use the formula PV=nRT. The conditions STP are: 1 atm of pressure and 273K of temperature:
PV=nRT ---> V=(nRT)/P
V= 100 mol x 0,082 l atm/K mol x 273K/ 1 atm
<em>V=2238, 6L</em>
Answer:

Explanation:
Lisoprisil's molecular mass is 405.488g/mol, we'll use this fact to calculate molarity, which units are mol/L, and we proceed to the calculus:
- First, we'll unify unities, the 10 milligrams of lisinopril we'll transform into grams.

- Now that we have the same unities we'll calculate molarity using the molecular mass, the grams of lisinopril and the liters in which these grams are, let's consider that our final unities have to be mol/L.

I hope you find this information useful and interesting! Good luck!
Answer:
Depending on the
value of
, the cell potential would be:
, using data from this particular question; or- approximately
, using data from the CRC handbooks.
Explanation:
In this galvanic cell, the following two reactions are going on:
- The conversion between
and
ions,
, and - The conversion between
and
ions,
.
Note that the standard reduction potential of
ions to
is higher than that of
ions to
. Alternatively, consider the fact that in the metal activity series, copper is more reactive than silver. Either way, the reaction is this cell will be spontaneous (and will generate a positive EMF) only if
ions are reduced while
is oxidized.
Therefore:
- The reduction reaction at the cathode will be:
. The standard cell potential of this reaction (according to this question) is
. According to the 2012 CRC handbook, that value will be approximately
.
- The oxidation at the anode will be:
. According to this question, this reaction in the opposite direction (
) has an electrode potential of
. When that reaction is inverted, the electrode potential will also be inverted. Therefore,
.
The cell potential is the sum of the electrode potentials at the cathode and at the anode:
.
Using data from the 1985 and 2012 CRC Handbook:
.