Answer:
Distance will decrease and work will decrease:
F = m a Newton's Second Law
a = F / m decreasing force will decrease acceleration
S = 1/2 a t^2 = 1/2 (F / m) t^2 distance traveled will decrease as force decreases
W = F * S work will decrease as both force and distance decrease
Answer: 888.45 K or 615.3 °c
Explanation:
According to Gay Lussacs law which states that at constant volume, pressure of an ideal gas is directly proportional to it's absolute temperature.
P/T = Constant
Therefore, P1/T1 = P2/T2
P1 = 6.7 atm
T1= 23°c = 273.15 + 23 = 296.15K
Since P2 is tripled, then,
P2 = 6.7 x 3= 20.1 atm
T2 = (20.1 x 296.15) ÷ 6.7
T2 = 888.45 K
Or in celcius 615.3°c
Answer:
Friction:-
The friction force is the force exerted by a surface as an object moves across it or makes an effort to move across it. There are at least two types of friction force - sliding and static friction. Though it is not always the case, the friction force often opposes the motion of an object. For example, if a book slides across the surface of a desk, then the desk exerts a friction force in the opposite direction of its motion. Friction results from the two surfaces being pressed together closely, causing inter molecular attractive forces between molecules of different surfaces. As such, friction depends upon the nature of the two surfaces and upon the degree to which they are pressed together. The maximum amount of friction force that a surface can exert upon an
EG:-
A coaster sliding against a table.
Gravity:-
The force of gravity is the force with which the earth, moon, or other massively large object attracts another object towards itself. By definition, this is the weight of the object. All objects upon earth experience a force of gravity that is directed "downward" towards the center of the earth. The force of gravity on earth is always equal to the weight of the object as found
EG:-
The force that causes a car to coast downhill even when you aren't stepping on the gas.
Elastic:-
Elasticity is the ability of a material to return to its original shape after being stretched or compressed. When an elastic material is stretched or compressed, it exerts elastic force. This force increases the more the material is stretched or compressed.
EG:-
An archer's stretched bow
The resultant force of both forces is 15.62 N.
<h3 /><h3>What is resultant?</h3>
The Resultant of forces is a single force obtained when two or more forces are combined.
To calculate the resultant of the force, we use the formula below.
Formula:
- R = √[a²+b²-2abcos∅]..................... Equation 1
Where:
- R = Resultant of the forces.
- ∅ = Angle between both forces
From the question,
Given:
Substitute these values into equation 1
- R = √[8²+10²-2×8×10cos120°]
- R = √[64+100-160cos120°]
- R =√ [164-160(-0.5)]
- R = √[164+80]
- R = √(244)
- R = 15.62 N
Hence, the resultant force of both forces is 15.62 N.
Learn more about resultant force here: brainly.com/question/25239010
#SPJ1
Answer:
19.5°
Explanation:
The energy of the mass must be conserved. The energy is given by:
1) 
where m is the mass, v is the velocity and h is the hight of the mass.
Let the height at the lowest point of the be h=0, the energy of the mass will be:
2) 
The energy when the mass comes to a stop will be:
3) 
Setting equations 2 and 3 equal and solving for height h will give:
4) 
The angle ∅ of the string with the vertical with the mass at the highest point will be given by:
5) 
where l is the lenght of the string.
Combining equations 4 and 5 and solving for ∅:
6) 