Inverse square law:

where

is the intensity at distance 1

is the intensity at distance 2

is distance 1

is distance 2
The inverse squared law state that intensity decreases in inverse proportion to the distance squared. So if light obeyed that rule, it will decreases its intensity as the square of the distance increases.
We can conclude that the correct answer is:
true.
Answer:
alternating mountain ranges and valley.
Hope u find this helpful
Answer:
a) A = 4.0 m
, b) w = 3.0 rad / s
, c) f = 0.477 Hz
, d) T = 20.94 s
Explanation:
The equation that describes the oscillatory motion is
x = A cos (wt + fi)
In the exercise we are told that the expression is
x = 4.0 cos (3.0 t + 0.10)
let's answer the different questions
a) the amplitude is
A = 4.0 m
b) the frequency or angular velocity
w = 3.0 rad / s
c) angular velocity and frequency are related
w = 2π f
f = w / 2π
f = 3 / 2π
f = 0.477 Hz
d) the period
frequency and period are related
T = 1 / f
T = 1 / 0.477
T = 20.94 s
e) the phase constant
Ф = 0.10 rad
f) velocity is defined by
v = dx / dt
v = - A w sin (wt + Ф)
speed is maximum when sine is + -1
v = A w
v = 4 3
v = 12 m / s
g) the angular velocity is
w² = k / m
k = m w²
k = 1.2 3²
k = 10.8 N / m
h) the total energy of the oscillator is
Em = ½ k A²
Em = ½ 10.8 4²
Em = 43.2 J
i) the potential energy is
Ke = ½ k x²
for t = 0 x = 4 cos (0 + 0.1)
x = 3.98 m
j) kinetic energy
K = ½ m v²
for t = 00.1
²
v = A w sin 0.10
v = 4 3 sin 0.10
v = 1.98 m / s
Answer:
The answer to the question is
The object would fall 57.625 m in the first 5 seconds
Explanation:
To solve the question, we note that
the height of fall = 490 ft = 149.352 m
Time to touch the ground = 7 seconds
We are required to find out how far the object falls in the first 5 seconds
We apply the relation
S = u·t + 0.5×g·t ² = We then have
149.352 = U×7+0.5*9.81*49 From where u = -13 m/s
Therefore to find how far it falls in the first 5 seconds, we have
-13*5 + 0.5*9.81*25 = 57.625 m