1. Amperes, is the SI unit (also a fundamental unit) responsible for current.
2.
Δq over Δt technically
Rearrange for Δq
I x Δt = Δq
1.5mA x 5 = Δq
Δq = 0.0075
Divide this by the fundamental charge "e"
Electrons: 0.0075 / 1.60 x 10^-19
Electrons: 4.6875 x 10^16 or 4.7 x 10^16
3. So we know that the end resistances will be equal so:
ρ = RA/L
ρL = RA
ρL/A = R
Now we can set up two equations one for the resistance of the aluminum bar and one for the copper: Where 1 represents aluminum and 2 represents copper

We are looking for L2 so we can isolate using algebra to get:

If you fill in those values you get 0.0205
or 2.05 cm
Answer:
The induced emf in the loop is 
Explanation:
Given that,
Length of the wire, L = 1.22 m
It changes its shape is changed from square to circular. Then the side of square be its circumference, 4a = L
4a = 1.22
a = 0.305 m
Area of square, 
Circumference of the loop,

Area of circle,

The induced emf is given by :

So, the induced emf in the loop is 
Answer:
D
Explanation:
because it doesn't agree with the law of definite proportion
and energy can niether be created nor destroyed but can be transformed from one form to another
Answer:
20 meters per second
Explanation:
If an object accelerates for 2 seconds, and accelerates by 10 meters per second, then that objects speed will be 20 meters per second, assuming hat there are no other factors involved.