It is 10^4 times the intensity at 0 db
<span>The photoelectric effect is about electrons being ejected from metals when light is shined on metals. The electrons do not behave like waves in the photoelectric effect. Black body radiation is all about the radiation emitted by warm bodies and not about those bodies behaving like waves. The emission spectra of atoms is all about what light is given off by atoms when electrons in those atoms jump down to lower energy levels from higher levels. That also has nothing to do with matter behaving as a wave. Interference is classically defined as the generation of a new wave with an amplitude modulated according to the waves that interfere to form that new wave. Note its emphasis on the wave part.</span>
I am thinking that maybe the problem is not with the calibration. It might be that the buffered solution is already expired since at this point the solution is already not stable and will give a different pH reading than what is expected.
Answer:
R₂ / R₁ = D / L
Explanation:
The resistance of a metal is
R = ρ L / A
Where ρ is the resistivity of aluminum, L is the length of the resistance and A its cross section
We apply this formal to both configurations
Small face measurements (W W)
The length is
L = W
Area
A = W W = W²
R₁ = ρ W / W² = ρ / W
Large face measurements (D L)
Length L = D= 2W
Area A = W L
R₂ = ρ D / WL = ρ 2W / W L = 2 ρ/L
The relationship is
R₂ / R₁ = 2W²/L
It hink that it is the 2nd one