Answer:
Explanation:
Given that,
Surface area A= 17m²
The speed at the top v" = 66m/s
Speed beneath is v' =40 m/s
The density of air p =1.29kg/m³
Weight of plane?
Assuming that,
the height difference between the top and bottom of the wind is negligible and we can ignore any change in gravitational potential energy of the fluid.
Using Bernoulli equation
P'+ ½pv'²+ pgh' = P'' + ½pv''² + pgh''
Where
P' is pressure at the bottom in N/m²
P" is pressure at the top in N/m²
v' is velocity at the bottom in m/s
v" is velocity at the top in m/s
Then, Bernoulli equation becomes
P'+ ½pv'² = P'' + ½pv''²
Rearranging
P' — P'' = ½pv"² —½pv'²
P'—P" = ½p ( v"² —v'²)
P'—P" = ½ × 1.29 × (66²-40²)
P'—P" = 1777.62 N/m²
Lift force can be found from
Pressure = force/Area
Force = ∆P ×A
Force = (P' —P")×A
Since we already have (P'—P")
Then, F=W = (P' —P")×A
W = 1777.62 × 17
W = 30,219.54 N
The weight of the plane is 30.22 KN
The electric force on the electron is opposite in direction to the electric field E. E points in the -y direction, so the electric force will point in the +y direction. The magnitude of the electric force is given by:
F = Eq
F = electric force, E = electric field strength, q = electron charge
We need to set up a magnetic field such that the magnetic force on the electron balances out the electric force. Since the electric force points in the +y direction, we need the magnetic force to point in the -y direction. Using the reversed right hand rule, the magnetic field must point in the -z direction for this to happen. Since the direction is perpendicular to the +x direction of the electron's velocity, the magnetic force is given by:
F = qvB
F = magnetic force, q = charge, v = velocity, B = magnetic field strength
The electric force must equal the magnetic force.
Eq = qvB
Do some algebra to isolate B:
E = vB
B = E/v
Let's solve for the electron's velocity. Its kinetic energy is given by:
KE = 0.5mv²
KE = kinetic energy, m = mass, v = velocity
Given values:
KE = 2.9keV = 4.6×10⁻¹⁶J
m = 9.1×10⁻³¹kg
Plug in and solve for v:
4.6×10⁻¹⁶ = 0.5(9.1×10⁻³¹)v²
v = 3.2×10⁷m/s
B = E/v
Given values:
E = 7500V/m
v = 3.2×10⁷m/s
Plug in and solve for B:
B = 7500/3.2×10⁷
B = 0.00023T
B = 0.23mT
Answer: Option (a) is the correct answer.
Explanation:
It is known that potential energy is the energy occupied by an object or substance due to its position is known as potential energy.
Therefore, more is the space occupied by an object more will be its position at a particular location. Hence, more will be its potential energy. On the other hand, smaller is the space occupied by an object, smaller will be the position holded by it.
Hence, smaller will be its potential energy.
Thus, we can conclude that for the given situation the statement, potential energy of the larger sphere is greater than that of the smaller sphere, is true.
Answer:
10.16 degrees
Explanation:
Apply Snells Law for both wavelenghts
\(n_{1}sin\theta_{1} = n_{2}sin\theta_{2}\)
For red
(1.620)(sin 25.5) = (1)(sin r)
For red, the angle is 35.45degrees
For violet
(1.660)(sin 25.5) = (1)(sin v)
For violet, the angle is 45.6 degrees
The difference is 45.6- 35.45 = 10.16 degrees