Answer:
Benzene: 37.5 Torr
Methylbenzene: 12.5 Torr
Explanation:
By Raoult's Law, each substance in a gas mixture contributes to the total pressure of the mixture proportionally to their respective mole fraction. So,
Ppartial = x*P°
Where x is the mole fraction (0.5 for each one because it's equimolar), and P° is the vapor pressure.
Benzene: Ppartial = 0.5 * 75 = 37.5 Torr
Methylbenzene: Ppartial = 0.5 * 25 = 12.5 Torr
The answer is (3), oxidation occurs at the anode and reduction occurs at the cathode. That's because the oxidation reaction can lose electrons and reduction can gain electrons.
Answer:
See explanation
Explanation:
The nature of hydrogen bonding in 2- nitrophenol and 4- nitrophenol is quite different.
In 2- nitrophenol, there is intramolecular hydrogen bonding. As a result of this, the compound has a low boiling point.
Then in 4- nitrophenol, there is intermolecular hydrogen bonding. This accounts for molecular association and higher boiling point in 4- nitrophenol.
Scavengers are animals that consume dead organisms that have died from causes other than predation. While scavenging generally refers to carnivores feeding on carrion, it is also a herbivorous feeding behavior. Scavengers play an important role in the ecosystem by consuming dead animal and plant material.
Here we have to draw the major product in the acid catalysed hydration reaction of 4-ethyl-3,3-dimethyl-1-hexene.
The 4-ethyl-3,3-dimethyl-1-hexene converts to 2-hydroxy-4-ethyl-3,3-dimethyl-1-hexane as a major product by acid catalyzed hydration reaction.
The acid catalyzed hydration of an alkene is the Sn¹ reaction. Where in the first step a carbocation is generated. The stability of the carbocation depends upon the position of the neighboring group having +I inductive effect.
In the next step the water molecule attack the carbocation and the corresponding alcohol is produced.
In 4-ethyl-3,3-dimethyl-1-hexene the carbocation formed in the C₂ position which is more stable than the C₁ position due to presence of the dimethyl and ethyl group in the neighboring position which have strong +I inductive effect. This is absence in C₁ position.
In the next step the water molecule attack the C₂ position to form the alcohol.
4-ethyl-3,3-dimethyl-1-hexene converts to 2-hydroxy-4-ethyl-3,3-dimethyl-1-hexane by acid catalyzed hydration reaction which is the major product along with 1-hydroxy-4-ethyl-3,3-dimethyl-1-hexane as a minor product.
The reaction mechanism is shown in the image.