all the allials must be aligned in the same direction
magnets are affected by heat, drops, and improper storage
Answer:
true?
Explanation:
Im positive but not 100% sure wait for someone else to answer and see if they say the same.
Work in general is given by W=F·d where F is the force vector and d is the displacement vector. The dot symbol is the dot product which is a measure of how parallel two vectors are. It can be replaced by the cosine of the angle between the two vectors and the vectors replaced by their magnitudes. If F and d are parallel then the angle is zero and the cosine is unity. So in this case work can be defined as the product of the magnitudes of the force and distance:
W=Fd
Answer:
The displacement of the volleyball is 2.62 m
Explanation:
Given;
initial velocity of the volleyball, u = 7.5 m/s
final velocity of the volleyball, v = 2.2 m/s
displacement of the volleyball, d = ?
Apply the following kinematic equation;
v² = u² - 2gd
2gd = u² - v²

Therefore, the displacement of the volleyball is 2.62 m
Answer:
λ = 162 10⁻⁷ m
Explanation:
Bohr's model for the hydrogen atom gives energy by the equation
= - k²e² / 2m (1 / n²)
Where k is the Coulomb constant, e and m the charge and mass of the electron respectively and n is an integer
The Planck equation
E = h f
The speed of light is
c = λ f
E = h c /λ
For a transition between two states we have
-
= - k²e² / 2m (1 /
² -1 /
²)
h c / λ = -k² e² / 2m (1 /
² - 1/
²)
1 / λ = (- k² e² / 2m h c) (1 /
² - 1/
²)
The Rydberg constant with a value of 1,097 107 m-1 is the result of the constant in parentheses
Let's calculate the emission of the transition
1 /λ = 1.097 10⁷ (1/10² - 1/8²)
1 / λ = 1.097 10⁷ (0.01 - 0.015625)
1 /λ = 0.006170625 10⁷
λ = 162 10⁻⁷ m