Explanation:
(c) I assume we're looking for mA.
Sum of forces on B in the -y direction:
∑F = ma
mBg − T = mBa
Sum of forces on A in the +x direction:
∑F = ma
T = mAa
Substitute:
mBg − mAa = mBa
mBg − mBa = mAa
mA = mB (g − a) / a
Plug in values:
mA = (5 kg) (10 m/s² − 0.01 (10 m/s²)) / (0.01 (10 m/s²))
mA = 495 kg
The answer key seems to have a mistake. It's possible they meant mB = 1 kg, or they changed mB to 5 kg but forgot to change the answer.
Answer:

Explanation:
You calculate the energy required to break all the bonds in the reactants.
Then you subtract the energy needed to break all the bonds in the products.
N₂ + O₂ ⟶ 2NO
N≡N + O=O ⟶ 2O-N=O
Bonds: 2N≡N 1O=O 2N-O + 2N=O
D/kJ·mol⁻¹: 941 495 201 607

Kinetic energy is energy of motion while temperature is a measure of that energy in substances.
Its Osteomyelitis becaus ethe cause of it is that some times bacteria sometimes get in tho the blood from an infection in another part of the body and then travels to the bone<span> in another part of the body and then travel to a bone.but it only depends on the </span>
Answer:
<h3>1.01 s</h3>
Explanation:
Using the equation of motion S = ut+1/2gt² to solve the problem where;
u is the initial velocity of the chocolate = 0m/s
t is the time taken
g is the acceleration due to gravity = 9.81m/s²
S is the height of fall = 5.0m
Substituting the given parameter into the formula to get the time t we have;
5 = 0(t)+1/2(9.81)t²
5 = 4.905t²
t² = 5/4.905
t² = 1.019
t = √1.019
t = 1.009 secs
<em>Hence it will take 1.01 secs for me to catch the chocolate bar</em>