I had to look for the options and here is my answer:
The two requirements for nuclear fusion that are needed to be met in order for the elements hydrogen and helium fuse to make heavier elements are extremely high temperatures and density. Hope this helps.
By adding together the number of protons and neutrons and multiplying by 1 amu, you can calculate the mass of the atom.
Answer:
Explanation:
2C₂H₅OH = C₄H₆ + 2H₂O + H₂
2 mole 1 mole
molecular weight of ethyl alcohol
mol weight of C₂H₅OH = 46 gm
mol weight of C₄H₆ 54 gm
540 gm of C₄H₆ = 10 mole
10 mole of C₄H₆ will require 20 mol of ethyl alcohol .
20 mole of ethyl alcohol = 20 x 46
= 920 gm
ethyl alcohol required = 920 gm .
Answer:
We need 10.14 grams of sodium bromide to make a 0.730 M solution
Explanation:
Step 1: Data given
Molarity of the sodium bromide (NaBr) = 0.730 M
Volume of the sodium bromide solution = 135 mL = 0.135 L
Molar mass sodium bromide (NaBr) = 102.89 g/mol
Step 2: Calculate moles NaBr
Moles NaBr = Molarity NaBr * volume NaBr
Moles NaBr = 0.730 M * 0.135 L
Moles NaBr = 0.09855 moles
Step 3: Calculate mass of NaBr
Mass NaBr = 0.09855 moles * 102.89 g/mol
Mass NaBr = 10.14 grams
We need 10.14 grams of sodium bromide to make a 0.730 M solution
<span>We know that protons gives positive charge, neutrons no charge and electrons negative, then +14 - 12 = +2
So the charge of the atom is sign positive and magnitude 2</span>