The six metalloids are boron, silicon, germanium, arsenic, antimony, and tellerium.
Answer:
1. The correct option is;
c. maintains charge balance in the cell
2. The correct option is;
c. +3.272 V
Explanation:
The aqueous solution in a galvanic cell is the electrolyte which is a ionic solution containing that permits the transfer of ions between the separated compartment of the galvanic cell such that the overall system is electrically neutral
Therefore, the aqueous solution maintains the charge balance in the cell
2. Here we have;
B₂ + 2e⁻ → 2B⁻ Ecell = 0.662 V
A⁺ + 1e⁻ → A Ecell = -1.305 V
Hence for the overall reaction, we have;
2A + B₂ → 2AB gives;
(0.662) - 2×(-1.305) = +3.272 V.
Answer: 6.162g of Ag2SO4 could be formed
Explanation:
Given;
0.255 moles of AgNO3
0.155 moles of H2SO4
Balanced equation will be given as;
2AgNO3(aq) + H2SO4(aq) -> Ag2SO4(s) + 2HNO3(aq)
Seeing that 2 moles of AgNO3 is required to react with 1 moles of H2SO4 to produce 1 mole of Ag2SO4,
Therefore the number of moles of Ag2SO4 produced is given by,
n(Ag2SO4) = 0.255 mol of AgNO3 ×
[0.155mol H2SO4 ÷ 2 mol AgNO3] x
[ 1 mol Ag2SO4 ÷ 1 mol H2SO4]
= 0.0198 mol of Ag2SO4.
mass = no of moles x molar mass
From literature, molar mass of Ag2SO4 = 311.799g/mol.
Thus,
Mass = 0.0198 x 311.799
= 6.162g
Therefore, 6.162g of Ag2SO4 could be formed
Answer:
25 coolers are need to be produce and sell in order to minimize the cost.
Explanation:
..[1]
Differentiating the given expression with respect to dx.


Putting ,


x = 25
Taking second derivative of expression [1]

(minima)
25 coolers are need to be produce and sell in order to minimize the cost.
4 m/s^2
I hope this helps!