there are no choices of statements
Explanation:
Reversible reactions that happen in a closed system eventually reach equilibrium. At equilibrium, the concentrations of reactants and products do not change. But the forward and reverse reactions have not stopped - they are still going on, and at the same rate as each other.
How does the law of conservation of mass apply to this reaction: C2H4 + O2 → H2O + CO2?
Answer:
Option (2)
Explanation:
Cohesion is usually defined as the contrasting property by which the water molecules are attached to one another, and adhesion is the property by which the molecular substances are linked to the molecules of other substances.
Since, the water molecules are able to form inter-molecular hydrogen bonding, so they are comprised of strong cohesive force.
And, as the water molecules are able to stick to the walls of the container, so they tend to show more of the properties for adhesion.
Thus, according to the given condition, water molecules are sticking to other substances and this is the property of adhesion.
Hence, the correct answer is option (2).
Molarity is given as,
Molarity = Moles / Volume of Solution ----- (1)
Also, Moles is given as,
Moles = Mass / M.mass
Substituting value of moles in eq. 1,
Molarity = Mass / M.mass × Volume
Solving for Mass,
Mass = Molarity × M.mass × Volume ---- (2)
Data Given;
Molarity = 2.8 mol.L⁻¹
M.mass = 101.5 g.mol⁻¹
Volume = 1 L (I have assumed it because it is not given)
Putting values in eq. 2,
Mass = 2.8 mol.L⁻¹ × 101.5 g.mol⁻¹ × 1 L
Mass = 284.2 g of CuF₂