Answer:
a. 3-methylbutan-2-ol
b. 2-methylcyclohexan-1-ol
Explanation:
For this reaction, we must remember that the hydroboration is an <u>"anti-Markovnikov" reaction</u>. This means that the "OH" will be added at the <em>least substituted carbon of the double bond.</em>
In the case of <u>2-methyl-2-butene</u>, the double bond is between carbons 2 and 3. Carbon 2 has two bonds with two methyls and carbon 3 is attached to 1 carbon. Therefore <u>the "OH" will be added to carbon three</u> producing <u>3-methylbutan-2-ol</u>.
For 1-methylcyclohexene, the double bond is between carbons 1 and 2. Carbon 1 is attached to two carbons (carbons 6 and 7) and carbon 2 is attached to one carbon (carbon 3). Therefore<u> the "OH" will be added to carbon 2</u> producing <u>2-methylcyclohexan-1-ol</u>.
See figure 1
I hope it helps!
Answer:
i think Aluminum (Al) oxidized, zinc(Zn) reduced
Answer:
The new temperature of the water bath 32.0°C.
Explanation:
Mass of water in water bath ,m= 8.10 kg = 8100 g ( 1kg = 1000g)
Initial temperature of the water = 
Final temperature of the water = 
Specific heat capacity of water under these conditions = c = 4.18 J/gK
Amount of energy lost by water = -Q = -69.0 kJ = -69.0 × 1000 J
( 1kJ=1000 J)




The new temperature of the water bath 32.0°C.
How it looks. basically the thing that tells you how it change. for example if an ice cube was melted (heat), it only changed physically not chemically as the h20 molecules are still there. however lets say you burn woos— you cant get that would back. its ash now and it has changed chemically.
Add an alkaline compound to raise the pH to 7.2.