Answer:- Third choice is correct, 17.6 moles
Solution:- The given balanced equation is:
Al_2(SO_4)_3+6KOH\rightarrow 2Al(OH)_3+3K_2SO_4
We are asked to calculate the moles of potassium hydroxide needed to completely react with 2.94 moles of aluminium sulfate.
From the balanced equation, there is 1:6 mol ratio between aluminium sulfate and potassium hydroxide.
It is a simple mole to mole conversion problem. We solve it using dimensional set up as:
2.94molAl_2(SO_4)_3(\frac{6molKOH}{1molAl_2(SO_4)_3})
= 17.6 mol KOH
So, Third choice is correct, 17.6 moles of potassium hydroxide are required to react with 2.94 moles of aluminium sulfate.
<u>Answer:</u> The time required will be 19.18 years
<u>Explanation:</u>
All the radioactive reactions follows first order kinetics.
The equation used to calculate half life for first order kinetics:

We are given:

Putting values in above equation, we get:

Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = ?
= initial amount of the reactant = 2 g
[A] = amount left after decay process = (2 - 0.5) = 1.5 g
Putting values in above equation, we get:

Hence, the time required will be 19.18 years
Answer: 15.850
Explanation:
The conversion used from liters to gallons is:
1 L = 0.264172 gallon
The conversion used from sec to min is:
60 sec = 1 min
1 sec =
We are asked: liters/sec = gallons/min
Therefore, to convert from liters/second to gallons/minute, multiply the number of liters/second by 15.850.
Answer:
The ans is weathering and erosion