Answer:
Σ(-1)^kx^k for k = 0 to n
Step-by-step explanation:
The nth Maclaurin polynomials for f to be
Pn(x) = f(0) + f'(0)x + f''(0)x²/2! + f"'(0)x³/3! +. ......
The given function is.
f(x) = 1/(1+x)
Differentiate four times with respect to x
f(x) = 1/(1+x)
f'(x) = -1/(1+x)²
f''(x) = 2/(1+x)³
f'''(x) = -6/(1+x)⁴
f''''(x) = 24/(1+x)^5
To calculate with a coefficient of 1
f(0) = 1
f'(0) = -1
f''(0) = 2
f'''(0) = -6
f''''(0) = 24
Findinf Pn(x) for n = 0 to 4.
Po(x) = 1
P1(x) = 1 - x
P2(x) = 1 - x + x²
P3(x) = 1 - x+ x² - x³
P4(x) = 1 - x+ x² - x³+ x⁴
Hence, the nth Maclaurin polynomials is
1 - x+ x² - x³+ x⁴ +.......+(-1)^nx^n
= Σ(-1)^kx^k for k = 0 to n
Answer:
f
Step-by-step explanation:
67n - 58 = n - 36
hope this helps, have a great day!
Answer:
4387 x 9 = 39,483
Step-by-step explanation:
Please consider giving me Brainliest
darrylh3333
Hope this helps
:)
--------------------------------------------------
Surface area of the cube
--------------------------------------------------
6(2.5 x 2.5) = 37.5m²
<em>(* Each area is 2.5 x 2.5, and there are 6 sides to the cube)</em>
--------------------------------------------------
Surface area of the rectangle prism
--------------------------------------------------
2(11 x 7) + 2(9 x 7) + 2(9 x 11) = 478m²
<em>(* The opposite side of the rectangle area is the same, therefore x2)
</em>
--------------------------------------------------
Overlapping area
--------------------------------------------------
2.5 x 2.5 = 6.25m²
--------------------------------------------------
Surface area of the composite figure
--------------------------------------------------
37.5 + 478 - 2(6.25) = 503m²
<em>(* The bottom of the cube and the top of the rectangle prism overlapped, so the area is overlapped twice, minus 2 times of that area)</em>
--------------------------------------------------
Answer: 503m²
--------------------------------------------------