Answer:
1800/300 = 6ropes
Explanation:
The engine weighs 1800N and the person exerts a force of 300N, so for him to lift the engine and exerting a force of 300N all through we divide the weight of the engine by the force exerted to know how many ropes are used. Which makes it 6 thereby each rope uses 300N to lift the engine.
To be able to determine the original speed of the car, we use kinematic equations to relate the acceleration, distance and the original speed of the car moving.
First, we manipulate the one of the kinematic equations
v^2 = v0^2 + 2 (a) (x) where v = 0 since the car stopped
Writing the equation in such a way that the initial velocity or v0 is written on one side of the equation,
<span>we get v0 = sqrt (2(a)(x))
Substituting the known values,
v0 = sqrt(2(3.50)(30.0))
v0 = 14.49 m/s
</span>
Therefore, before stopping the car the original speed of the car would be 14.49 m/s
Answer:
The energy stored in the capacitor quadruples its original value.
Explanation:
The energy stored in a capacitor is given by the equation

where
C is the capacitance
V is the voltage across the plates
The capacitance, C, depends only on the properties of the capacitor, so it does not change when the voltage applied is changed.
Instead, in this problem the voltage applied is doubled:
V' = 2V
So the new energy stored is

so, the energy stored has quadrupled.
<span>Among the choices provide, the one statement that is true with regards to a charged atom is C, the number of protons and the number of electrons within the same atom are unequal. A charged atom is called an ion. Atoms are nonpartisan since they have similar quantities of positive and negative charges.</span>
Answer:
(a) 0
(b) 10ML
(c) 
(d) 
Explanation:
(a) When hanging straight down. The child is at the lowest position. His potential energy with respect to this point would also be 0.
(b) Since the rope has length L m. When the rope is horizontal, he is at L (m) high with respect to the lowest swinging position. His potential energy with respect to this point should be

where g = 10m/s2 is the gravitational acceleration.
(c) At angle
from the vertical. Vertically speaking, the child should be at a distance of
to the swinging point, and a vertical distance of
to the lowest position. His potential energy to this point would be:

(d) at angle
from the horizontal. Suppose he is higher than the horizontal line. This would mean he's at a vertical distance of
from the swinging point and higher than it. Therefore his vertical distance to the lowest point is 
His potential energy to his point would be:
